IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i19p7945-d419759.html
   My bibliography  Save this article

Distribution Models of Timber Species for Forest Conservation and Restoration in the Andean-Amazonian Landscape, North of Peru

Author

Listed:
  • Dany A. Cotrina Sánchez

    (Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru)

  • Elgar Barboza Castillo

    (Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru)

  • Nilton B. Rojas Briceño

    (Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru)

  • Manuel Oliva

    (Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru)

  • Cristóbal Torres Guzman

    (Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru)

  • Carlos A. Amasifuen Guerra

    (Centro Experimental La Molina, Dirección de Recursos Genéticos y Biotecnología, Instituto Nacional de Innovación Agraria (INIA), La Molina 15012, Lima, Peru)

  • Subhajit Bandopadhyay

    (Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piatkowska 94, 60-649 Poznan, Poland)

Abstract

The Andean-Amazonian landscape has been universally recognized for its wide biodiversity, and is considered as global repository of ecosystem services. However, the severe loss of forest cover and rapid reduction of the timber species seriously threaten this ecosystem and biodiversity. In this study, we have modeled the distribution of the ten most exploited timber forest species in Amazonas (Peru) to identify priority areas for forest conservation and restoration. Statistical and cartographic protocols were applied with 4454 species records and 26 environmental variables using a Maximum Entropy model (MaxEnt). The result showed that the altitudinal variable was the main regulatory factor that significantly controls the distribution of the species. We found that nine species are distributed below 1000 m above sea level (a.s.l.), except Cedrela montana , which was distributed above 1500 m a.s.l., covering 40.68%. Eight of 10 species can coexist, and the species with the highest percentage of potential restoration area is Cedrela montana (14.57% from Amazonas). However, less than 1.33% of the Amazon has a potential distribution of some species and is protected under some category of conservation. Our study will contribute as a tool for the sustainable management of forests and will provide geographic information to complement forest restoration and conservation plans.

Suggested Citation

  • Dany A. Cotrina Sánchez & Elgar Barboza Castillo & Nilton B. Rojas Briceño & Manuel Oliva & Cristóbal Torres Guzman & Carlos A. Amasifuen Guerra & Subhajit Bandopadhyay, 2020. "Distribution Models of Timber Species for Forest Conservation and Restoration in the Andean-Amazonian Landscape, North of Peru," Sustainability, MDPI, vol. 12(19), pages 1-20, September.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:19:p:7945-:d:419759
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/19/7945/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/19/7945/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Poonam Tripathi & Mukund Dev Behera & Partha Sarathi Roy, 2017. "Optimized grid representation of plant species richness in India—Utility of an existing national database in integrated ecological analysis," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-13, March.
    2. Pecchi, Matteo & Marchi, Maurizio & Burton, Vanessa & Giannetti, Francesca & Moriondo, Marco & Bernetti, Iacopo & Bindi, Marco & Chirici, Gherardo, 2019. "Species distribution modelling to support forest management. A literature review," Ecological Modelling, Elsevier, vol. 411(C).
    3. Ariel Beltramino & Roberto Vogler & Diego Gutiérrez Gregoric & Alejandra Rumi, 2015. "Impact of climate change on the distribution of a giant land snail from South America: predicting future trends for setting conservation priorities on native malacofauna," Climatic Change, Springer, vol. 131(4), pages 621-633, August.
    4. Tomislav Hengl & Jorge Mendes de Jesus & Gerard B M Heuvelink & Maria Ruiperez Gonzalez & Milan Kilibarda & Aleksandar Blagotić & Wei Shangguan & Marvin N Wright & Xiaoyuan Geng & Bernhard Bauer-Marsc, 2017. "SoilGrids250m: Global gridded soil information based on machine learning," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-40, February.
    5. Santiago José Elías Velazco & Franklin Galvão & Fabricio Villalobos & Paulo De Marco Júnior, 2017. "Using worldwide edaphic data to model plant species niches: An assessment at a continental extent," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-24, October.
    6. Helge Walentowski & Steffi Heinrichs & Stefan Hohnwald & Alexander Wiegand & Henry Heinen & Martin Thren & Oscar A. Gamarra Torres & Ana B. Sabogal & Stefan Zerbe, 2018. "Vegetation Succession on Degraded Sites in the Pomacochas Basin (Amazonas, N Peru)—Ecological Options for Forest Restoration," Sustainability, MDPI, vol. 10(3), pages 1-17, February.
    7. Lars Gamfeldt & Tord Snäll & Robert Bagchi & Micael Jonsson & Lena Gustafsson & Petter Kjellander & María C. Ruiz-Jaen & Mats Fröberg & Johan Stendahl & Christopher D. Philipson & Grzegorz Mikusiński , 2013. "Higher levels of multiple ecosystem services are found in forests with more tree species," Nature Communications, Nature, vol. 4(1), pages 1-8, June.
    8. Paulo De Marco Júnior & Caroline Corrêa Nóbrega, 2018. "Evaluating collinearity effects on species distribution models: An approach based on virtual species simulation," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-25, September.
    9. Sears, Robin R. & Cronkleton, Peter & Polo Villanueva, Fredy & Miranda Ruiz, Medardo & Pérez-Ojeda del Arco, Matías, 2018. "Farm-forestry in the Peruvian Amazon and the feasibility of its regulation through forest policy reform," Forest Policy and Economics, Elsevier, vol. 87(C), pages 49-58.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gloria P. Cárdenas & Nino Bravo & Elgar Barboza & Wilian Salazar & Jimmy Ocaña & Miguel Vázquez & Roiser Lobato & Pedro Injante & Carlos I. Arbizu, 2023. "Current and Future Distribution of Shihuahuaco ( Dipteryx spp.) under Climate Change Scenarios in the Central-Eastern Amazon of Peru," Sustainability, MDPI, vol. 15(10), pages 1-16, May.
    2. Gerson Meza Mori & Cristóbal Torres Guzmán & Manuel Oliva-Cruz & Rolando Salas López & Gladys Marlo & Elgar Barboza, 2022. "Spatial Analysis of Environmentally Sensitive Areas to Soil Degradation Using MEDALUS Model and GIS in Amazonas (Peru): An Alternative for Ecological Restoration," Sustainability, MDPI, vol. 14(22), pages 1-20, November.
    3. Jesús Rascón & Wildor Gosgot Angeles & Manuel Oliva-Cruz & Miguel Ángel Barrena Gurbillón, 2022. "Wind Characteristics and Wind Energy Potential in Andean Towns in Northern Peru between 2016 and 2020: A Case Study of the City of Chachapoyas," Sustainability, MDPI, vol. 14(10), pages 1-11, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John M. Humphreys & Robert B. Srygley & David H. Branson, 2022. "Geographic Variation in Migratory Grasshopper Recruitment under Projected Climate Change," Geographies, MDPI, vol. 2(1), pages 1-19, January.
    2. Ebrahim Jahanshiri & Nur Marahaini Mohd Nizar & Tengku Adhwa Syaherah Tengku Mohd Suhairi & Peter J. Gregory & Ayman Salama Mohamed & Eranga M. Wimalasiri & Sayed N. Azam-Ali, 2020. "A Land Evaluation Framework for Agricultural Diversification," Sustainability, MDPI, vol. 12(8), pages 1-19, April.
    3. Pimenta, Mayra & Andrade, André Felipe Alves de & Fernandes, Fernando Hiago Souza & Amboni, Mayra Pereira de Melo & Almeida, Renata Silva & Soares, Ana Hermínia Simões de Bello & Falcon, Guth Berger &, 2022. "One size does not fit all: Priority areas for real world problems," Ecological Modelling, Elsevier, vol. 470(C).
    4. Innangi, Michele & Balestrieri, Rosario & Danise, Tiziana & d’Alessandro, Francesco & Fioretto, Antonietta, 2019. "From soil to bird community: A Partial Least Squares approach to investigate a natural wooded area surrounded by urban patchwork (Astroni crater, southern Italy)," Ecological Modelling, Elsevier, vol. 394(C), pages 1-10.
    5. Zanchi, Giuliana & Belyazid, Salim & Akselsson, Cecilia & Yu, Lin, 2014. "Modelling the effects of management intensification on multiple forest services: a Swedish case study," Ecological Modelling, Elsevier, vol. 284(C), pages 48-59.
    6. Telmo José Mendes & Diego Silva Siqueira & Eduardo Barretto Figueiredo & Ricardo de Oliveira Bordonal & Mara Regina Moitinho & José Marques Júnior & Newton La Scala Jr., 2021. "Soil carbon stock estimations: methods and a case study of the Maranhão State, Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16410-16427, November.
    7. Joachim Eisenberg & Fabrice A. Muvundja, 2020. "Quantification of Erosion in Selected Catchment Areas of the Ruzizi River (DRC) Using the (R)USLE Model," Land, MDPI, vol. 9(4), pages 1-18, April.
    8. Peter Bossew & Giorgia Cinelli & Giancarlo Ciotoli & Quentin G. Crowley & Marc De Cort & Javier Elío Medina & Valeria Gruber & Eric Petermann & Tore Tollefsen, 2020. "Development of a Geogenic Radon Hazard Index—Concept, History, Experiences," IJERPH, MDPI, vol. 17(11), pages 1-23, June.
    9. Ravic Nijbroek & Kristin Piikki & Mats Söderström & Bas Kempen & Katrine G. Turner & Simeon Hengari & John Mutua, 2018. "Soil Organic Carbon Baselines for Land Degradation Neutrality: Map Accuracy and Cost Tradeoffs with Respect to Complexity in Otjozondjupa, Namibia," Sustainability, MDPI, vol. 10(5), pages 1-20, May.
    10. Yang Yi & Mingchang Shi & Jialin Liu & Chen Zhang & Xiaoding Yi & Sha Li & Chunyang Chen & Liangzhao Lin, 2022. "Spatial Distribution of Precise Suitability of Plantation: A Case Study of Main Coniferous Forests in Hubei Province, China," Land, MDPI, vol. 11(5), pages 1-19, May.
    11. Fritz, Steffen & See, Linda & Bayas, Juan Carlos Laso & Waldner, François & Jacques, Damien & Becker-Reshef, Inbal & Whitcraft, Alyssa & Baruth, Bettina & Bonifacio, Rogerio & Crutchfield, Jim & Rembo, 2019. "A comparison of global agricultural monitoring systems and current gaps," Agricultural Systems, Elsevier, vol. 168(C), pages 258-272.
    12. Rachele Venanzi & Francesco Latterini & Walter Stefanoni & Damiano Tocci & Rodolfo Picchio, 2022. "Variations of Soil Physico-Chemical and Biological Features after Logging Using Two Different Ground-Based Extraction Methods in a Beech High Forest—A Case Study," Land, MDPI, vol. 11(3), pages 1-14, March.
    13. Amirhossein Hassani & Adisa Azapagic & Nima Shokri, 2021. "Global predictions of primary soil salinization under changing climate in the 21st century," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    14. Jacqueline Loos & Henrik Von Wehrden, 2018. "Beyond Biodiversity Conservation: Land Sharing Constitutes Sustainable Agriculture in European Cultural Landscapes," Sustainability, MDPI, vol. 10(5), pages 1-11, May.
    15. Mohamed Ali Mohamed, 2021. "An Assessment of Forest Cover Change and Its Driving Forces in the Syrian Coastal Region during a Period of Conflict, 2010 to 2020," Land, MDPI, vol. 10(2), pages 1-25, February.
    16. Yu Feng & Zhenzhong Zeng & Timothy D. Searchinger & Alan D. Ziegler & Jie Wu & Dashan Wang & Xinyue He & Paul R. Elsen & Philippe Ciais & Rongrong Xu & Zhilin Guo & Liqing Peng & Yiheng Tao & Dominick, 2022. "Doubling of annual forest carbon loss over the tropics during the early twenty-first century," Nature Sustainability, Nature, vol. 5(5), pages 444-451, May.
    17. Amintas Brandão Jr. & Lisa Rausch & América Paz Durán & Ciniro Costa Jr. & Seth A. Spawn & Holly K. Gibbs, 2020. "Estimating the Potential for Conservation and Farming in the Amazon and Cerrado under Four Policy Scenarios," Sustainability, MDPI, vol. 12(3), pages 1-22, February.
    18. Chen, Si & Shahi, Chander & Chen, Han Y.H. & Kumar, Praveen & Ma, Zilong & McLaren, Brian, 2018. "Trade-offs and Synergies Between Economic Gains and Plant Diversity Across a Range of Management Alternatives in Boreal Forests," Ecological Economics, Elsevier, vol. 151(C), pages 162-172.
    19. Bughici, Theodor & Skaggs, Todd H. & Corwin, Dennis L. & Scudiero, Elia, 2022. "Ensemble HYDRUS-2D modeling to improve apparent electrical conductivity sensing of soil salinity under drip irrigation," Agricultural Water Management, Elsevier, vol. 272(C).
    20. Kolo, Horst & Kindu, Mengistie & Knoke, Thomas, 2020. "Optimizing forest management for timber production, carbon sequestration and groundwater recharge," Ecosystem Services, Elsevier, vol. 44(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:19:p:7945-:d:419759. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.