IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v477y2023ics0304380022003532.html
   My bibliography  Save this article

Robust identification of potential habitats of a rare demersal species (blackspot seabream) in the Northeast Atlantic

Author

Listed:
  • De Cubber, Lola
  • Trenkel, Verena M.
  • Diez, Guzman
  • Gil-Herrera, Juan
  • Novoa Pabon, Ana Maria
  • Eme, David
  • Lorance, Pascal

Abstract

Species distribution models (SDM) are commonly used to identify potential habitats. When fitting them to heterogeneous, opportunistically collated presence/absence data, imbalance in the number of presence and absence observations often occurs, which could influence results. To robustly identify potential habitats for blackspot seabream (Pagellus bogaraveo) throughout its distribution area in the Northeast Atlantic and the western Mediterranean Sea, we used an ensemble species distribution modelling (eSDM) approach, modelling gridded presence–absence data with environmental predictors for two types of occurrence data sets. The first data set displayed the observed unbalanced spatially heterogeneous presence/absence ratio and the second a balanced presence/absence ratio. The data covered the full distribution area, including the European Atlantic shelf, the Azorean region and the Western Mediterranean Sea. Across these regions, populations display variable status. The main environmental predictors for potential habitats were bathymetry and annual maximum SST. The fitted ensemble compromise (eSDM) was projected over the whole grid to create a habitat suitability map. This map exhibited higher probabilities of presence for the balanced-ratio data set. A binary presence–absence map was then generated using optimized presence probability thresholds for four validation indices. Using the true skill statistic to optimize the threshold, the surface areas of the binary presence–absence map was 53% smaller for the balanced data set than for the observed unbalanced data set. However, the choice of validation index had an even greater impact (up to 15 000%). This indicates that studies using opportunistic data for SDM fitting need to pay attention to the effects of presence/absence data imbalance and the choice of validation index to fully evaluate uncertainty.

Suggested Citation

  • De Cubber, Lola & Trenkel, Verena M. & Diez, Guzman & Gil-Herrera, Juan & Novoa Pabon, Ana Maria & Eme, David & Lorance, Pascal, 2023. "Robust identification of potential habitats of a rare demersal species (blackspot seabream) in the Northeast Atlantic," Ecological Modelling, Elsevier, vol. 477(C).
  • Handle: RePEc:eee:ecomod:v:477:y:2023:i:c:s0304380022003532
    DOI: 10.1016/j.ecolmodel.2022.110255
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380022003532
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2022.110255?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pecchi, Matteo & Marchi, Maurizio & Burton, Vanessa & Giannetti, Francesca & Moriondo, Marco & Bernetti, Iacopo & Bindi, Marco & Chirici, Gherardo, 2019. "Species distribution modelling to support forest management. A literature review," Ecological Modelling, Elsevier, vol. 411(C).
    2. G. Mateo, Rubén & Aroca-Fernández, María José & Gastón, Aitor & Gómez-Rubio, Virgilio & Saura, Santiago & García-Viñas, Juan Ignacio, 2019. "Looking for an optimal hierarchical approach for ecologically meaningful niche modelling," Ecological Modelling, Elsevier, vol. 409(C), pages 1-1.
    3. Kenneth F Kellner & Robert K Swihart, 2014. "Accounting for Imperfect Detection in Ecology: A Quantitative Review," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-8, October.
    4. Schickele, Alexandre & Leroy, Boris & Beaugrand, Gregory & Goberville, Eric & Hattab, Tarek & Francour, Patrice & Raybaud, Virginie, 2020. "Modelling European small pelagic fish distribution: Methodological insights," Ecological Modelling, Elsevier, vol. 416(C).
    5. Alan H Welsh & David B Lindenmayer & Christine F Donnelly, 2013. "Fitting and Interpreting Occupancy Models," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-21, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benkendorf, Donald J. & Schwartz, Samuel D. & Cutler, D. Richard & Hawkins, Charles P., 2023. "Correcting for the effects of class imbalance improves the performance of machine-learning based species distribution models," Ecological Modelling, Elsevier, vol. 483(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gurutzeta Guillera-Arroita & José J. Lahoz-Monfort, 2017. "Species occupancy estimation and imperfect detection: shall surveys continue after the first detection?," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(4), pages 381-398, October.
    2. Srivastava, Vivek & Carroll, Allan L., 2023. "Dynamic distribution modelling using a native invasive species, the mountain pine beetle," Ecological Modelling, Elsevier, vol. 482(C).
    3. Yang Yi & Mingchang Shi & Jialin Liu & Chen Zhang & Xiaoding Yi & Sha Li & Chunyang Chen & Liangzhao Lin, 2022. "Spatial Distribution of Precise Suitability of Plantation: A Case Study of Main Coniferous Forests in Hubei Province, China," Land, MDPI, vol. 11(5), pages 1-19, May.
    4. Yingxiao Zhang & Allison L. Steiner, 2022. "Projected climate-driven changes in pollen emission season length and magnitude over the continental United States," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Tenan, S. & Maffioletti, C. & Caccianiga, M. & Compostella, C. & Seppi, R. & Gobbi, M., 2016. "Hierarchical models for describing space-for-time variations in insect population size and sex-ratio along a primary succession," Ecological Modelling, Elsevier, vol. 329(C), pages 18-28.
    6. Farahmand, Shekoofeh & Hilmi, Nathalie & Cinar, Mine & Safa, Alain & Lam, Vicky W.Y. & Djoundourian, Salpie & Shahin, Wassim & Ben Lamine, Emna & Schickele, Alexandre & Guidetti, Paolo & Allemand, Den, 2023. "Climate change impacts on Mediterranean fisheries: A sensitivity and vulnerability analysis for main commercial species," Ecological Economics, Elsevier, vol. 211(C).
    7. Mateo, Rubén G. & Arellano, Gabriel & Gómez-Rubio, Virgilio & Tello, J. Sebastián & Fuentes, Alfredo F. & Cayola, Leslie & Loza, M. Isabel & Cala, Victoria & Macía, Manuel J., 2022. "Insights on biodiversity drivers to predict species richness in tropical forests at the local scale," Ecological Modelling, Elsevier, vol. 473(C).
    8. Wentao Yang & Huaxi He & Dongsheng Wei & Hao Chen, 2022. "Generating pseudo-absence samples of invasive species based on outlier detection in the geographical characteristic space," Journal of Geographical Systems, Springer, vol. 24(2), pages 261-279, April.
    9. Perennes, Marie & Diekötter, Tim & Groß, Jens & Burkhard, Benjamin, 2021. "A hierarchical framework for mapping pollination ecosystem service potential at the local scale," Ecological Modelling, Elsevier, vol. 444(C).
    10. Kenneth F Kellner & Robert K Swihart, 2014. "Accounting for Imperfect Detection in Ecology: A Quantitative Review," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-8, October.
    11. David L. Borchers & Tiago A. Marques, 2017. "From distance sampling to spatial capture–recapture," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(4), pages 475-494, October.
    12. Bazzato, Erika & Rosati, Leonardo & Canu, Simona & Fiori, Michele & Farris, Emmanuele & Marignani, Michela, 2021. "High spatial resolution bioclimatic variables to support ecological modelling in a Mediterranean biodiversity hotspot," Ecological Modelling, Elsevier, vol. 441(C).
    13. Matt Higham & Jay Ver Hoef & Lisa Madsen & Andy Aderman, 2021. "Adjusting a finite population block kriging estimator for imperfect detection," Environmetrics, John Wiley & Sons, Ltd., vol. 32(1), February.
    14. Whitlock, Steven L. & Womble, Jamie N. & Peterson, James T., 2020. "Modelling pinniped abundance and distribution by combining counts at terrestrial sites and in-water sightings," Ecological Modelling, Elsevier, vol. 420(C).
    15. Fangyu Ding & Tian Ma & Mengmeng Hao & Qian Wang & Shuai Chen & Di Wang & Luqi Huang & Xiaobo Zhang & Dong Jiang, 2020. "Mapping Worldwide Environmental Suitability for Artemisia annua L," Sustainability, MDPI, vol. 12(4), pages 1-10, February.
    16. Hillary Mugiyo & Vimbayi G. P. Chimonyo & Mbulisi Sibanda & Richard Kunz & Cecilia R. Masemola & Albert T. Modi & Tafadzwanashe Mabhaudhi, 2021. "Evaluation of Land Suitability Methods with Reference to Neglected and Underutilised Crop Species: A Scoping Review," Land, MDPI, vol. 10(2), pages 1-24, January.
    17. Dany A. Cotrina Sánchez & Elgar Barboza Castillo & Nilton B. Rojas Briceño & Manuel Oliva & Cristóbal Torres Guzman & Carlos A. Amasifuen Guerra & Subhajit Bandopadhyay, 2020. "Distribution Models of Timber Species for Forest Conservation and Restoration in the Andean-Amazonian Landscape, North of Peru," Sustainability, MDPI, vol. 12(19), pages 1-20, September.
    18. Moullec, Fabien & Barrier, Nicolas & Drira, Sabrine & Guilhaumon, François & Hattab, Tarek & Peck, Myron A. & Shin, Yunne-Jai, 2022. "Using species distribution models only may underestimate climate change impacts on future marine biodiversity," Ecological Modelling, Elsevier, vol. 464(C).
    19. Arayaselassie Abebe Semu & Tamrat Bekele & Ermias Lulekal & Paloma Cariñanos & Sileshi Nemomissa, 2021. "Projected Impact of Climate Change on Habitat Suitability of a Vulnerable Endemic Vachellia negrii (pic.serm.) kyal. & Boatwr (Fabaceae) in Ethiopia," Sustainability, MDPI, vol. 13(20), pages 1-16, October.
    20. Gerhard Karrer & Gabriele Bassler-Binder & Wolfgang Willner, 2022. "Assessment of Drought-Tolerant Provenances of Austria’s Indigenous Tree Species," Sustainability, MDPI, vol. 14(5), pages 1-30, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:477:y:2023:i:c:s0304380022003532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.