IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i22p14866-d969133.html
   My bibliography  Save this article

Spatial Analysis of Environmentally Sensitive Areas to Soil Degradation Using MEDALUS Model and GIS in Amazonas (Peru): An Alternative for Ecological Restoration

Author

Listed:
  • Gerson Meza Mori

    (Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), National University Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Chachapoyas 01001, Peru)

  • Cristóbal Torres Guzmán

    (Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), National University Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Chachapoyas 01001, Peru)

  • Manuel Oliva-Cruz

    (Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), National University Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Chachapoyas 01001, Peru)

  • Rolando Salas López

    (Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), National University Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Chachapoyas 01001, Peru)

  • Gladys Marlo

    (Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), National University Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Chachapoyas 01001, Peru)

  • Elgar Barboza

    (Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), National University Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Chachapoyas 01001, Peru
    Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Av. La Molina 1981, Lima 15024, Peru)

Abstract

Land degradation is a permanent global threat that requires an interdisciplinary approach to addressing solutions in a given territory. This study, therefore, analyses environmentally sensitive areas to land degradation using the Mediterranean Desertification and Land Use (MEDALUS) and Geographic Information System (GIS) method through a multi-criteria approach in the district of Florida (Peru). For the method, we considered the main quality indicators such as: Climate Quality Index (CQI), Soil Quality Index (SQI), Vegetation Quality Index (VQI), and Management Quality Index (MQI). There were also identified groups of parameters for each of the quality indicators analyzed. The results showed that 2.96% of the study area is classified as critical; 48.85% of the surface is classified as fragile; 15.48% of the areas are potentially endangered, and 30.46% are not threatened by degradation processes. Furthermore, SQI, VQI, and MQI induced degradation processes in the area. Based on the results, five restoration proposals were made in the study area: (i) organic manure production, (ii) cultivated and improved pastures and livestock improvement, (iii) native forest restoration, (iv) construction of reservoirs in the top hills and (v) uses of new technologies. The findings and proposals can be a basic support and further improved by decision-makers when implemented in situ to mitigate degradation for a sustainable use of the territory.

Suggested Citation

  • Gerson Meza Mori & Cristóbal Torres Guzmán & Manuel Oliva-Cruz & Rolando Salas López & Gladys Marlo & Elgar Barboza, 2022. "Spatial Analysis of Environmentally Sensitive Areas to Soil Degradation Using MEDALUS Model and GIS in Amazonas (Peru): An Alternative for Ecological Restoration," Sustainability, MDPI, vol. 14(22), pages 1-20, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:14866-:d:969133
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/22/14866/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/22/14866/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dany A. Cotrina Sánchez & Elgar Barboza Castillo & Nilton B. Rojas Briceño & Manuel Oliva & Cristóbal Torres Guzman & Carlos A. Amasifuen Guerra & Subhajit Bandopadhyay, 2020. "Distribution Models of Timber Species for Forest Conservation and Restoration in the Andean-Amazonian Landscape, North of Peru," Sustainability, MDPI, vol. 12(19), pages 1-20, September.
    2. Saowanee Wijitkosum, 2020. "Reducing Vulnerability to Desertification by Using the Spatial Measures in a Degraded Area in Thailand," Land, MDPI, vol. 9(2), pages 1-20, February.
    3. Helge Walentowski & Steffi Heinrichs & Stefan Hohnwald & Alexander Wiegand & Henry Heinen & Martin Thren & Oscar A. Gamarra Torres & Ana B. Sabogal & Stefan Zerbe, 2018. "Vegetation Succession on Degraded Sites in the Pomacochas Basin (Amazonas, N Peru)—Ecological Options for Forest Restoration," Sustainability, MDPI, vol. 10(3), pages 1-17, February.
    4. Mohamed S. Shokr & Mostafa. A. Abdellatif & Ahmed A. El Baroudy & Abdelrazek Elnashar & Esmat F. Ali & Abdelaziz A. Belal & Wael. Attia & Mukhtar Ahmed & Ali A. Aldosari & Zoltan Szantoi & Mohamed E. , 2021. "Development of a Spatial Model for Soil Quality Assessment under Arid and Semi-Arid Conditions," Sustainability, MDPI, vol. 13(5), pages 1-15, March.
    5. Gao Peng & Wang Bing & Geng Guangpo & Zhang Guangcan, 2013. "Spatial Distribution of Soil Organic Carbon and Total Nitrogen Based on GIS and Geostatistics in a Small Watershed in a Hilly Area of Northern China," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-9, December.
    6. Douglas L. Karlen & Charles W. Rice, 2015. "Soil Degradation: Will Humankind Ever Learn?," Sustainability, MDPI, vol. 7(9), pages 1-12, September.
    7. Saskia Keesstra & Gerben Mol & Jan De Leeuw & Joop Okx & Co Molenaar & Margot De Cleen & Saskia Visser, 2018. "Soil-Related Sustainable Development Goals: Four Concepts to Make Land Degradation Neutrality and Restoration Work," Land, MDPI, vol. 7(4), pages 1-20, November.
    8. Stephanie Chizmar & Miguel Castillo & Dante Pizarro & Hector Vasquez & Wilmer Bernal & Raul Rivera & Erin Sills & Robert Abt & Rajan Parajuli & Frederick Cubbage, 2020. "A Discounted Cash Flow and Capital Budgeting Analysis of Silvopastoral Systems in the Amazonas Region of Peru," Land, MDPI, vol. 9(10), pages 1-15, September.
    9. Pedro Barrientos Felipa, 2018. "La agricultura peruana y su capacidad de competir en el mercado internacional," Revista Equidad y Desarrollo, Universidad de la Salle, issue 32, pages 143-179, July.
    10. Rattan Lal, 2015. "Restoring Soil Quality to Mitigate Soil Degradation," Sustainability, MDPI, vol. 7(5), pages 1-21, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Theilon Henrique de Jesus Macêdo & Cristiano Tagliaferre & Bismarc Lopes da Silva & Alessandro de Paula & Odair Lacerda Lemos & Felizardo Adenilson Rocha & Rosilene Gomes de Souza Pinheiro & Ana Carol, 2023. "Assessment of Land Desertification in the Brazilian East Atlantic Region Using the Medalus Model and Google Earth Engine," Land, MDPI, vol. 13(1), pages 1-16, December.
    2. Letizia Pace & Vito Imbrenda & Maria Lanfredi & Pavel Cudlín & Tiziana Simoniello & Luca Salvati & Rosa Coluzzi, 2023. "Delineating the Intrinsic, Long-Term Path of Land Degradation: A Spatially Explicit Transition Matrix for Italy, 1960–2010," IJERPH, MDPI, vol. 20(3), pages 1-18, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, vol. 8(3), pages 1-41, March.
    2. Meine van Noordwijk, 2021. "Agroforestry-Based Ecosystem Services: Reconciling Values of Humans and Nature in Sustainable Development," Land, MDPI, vol. 10(7), pages 1-24, July.
    3. Qiyang Fu & Fanxiang Meng & Yuan Zhang & Zongliang Wang & Tianxiao Li & Renjie Hou, 2022. "Ameliorating Effects of Soil Aggregate Promoter on the Physicochemical Properties of Solonetzes in the Songnen Plain of Northeast China," Sustainability, MDPI, vol. 14(10), pages 1-12, May.
    4. Mostafa A. Abdellatif & Ahmed A. El Baroudy & Muhammad Arshad & Esawy K. Mahmoud & Ahmed M. Saleh & Farahat S. Moghanm & Kamal H. Shaltout & Ebrahem M. Eid & Mohamed S. Shokr, 2021. "A GIS-Based Approach for the Quantitative Assessment of Soil Quality and Sustainable Agriculture," Sustainability, MDPI, vol. 13(23), pages 1-24, December.
    5. Ahmad A. Al-Ghamdi & Yilma Tadesse & Nuru Adgaba & Abdulaziz G. Alghamdi, 2021. "Soil Degradation and Restoration in Southwestern Saudi Arabia through Investigation of Soil Physiochemical Characteristics and Nutrient Status as Indicators," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    6. Sriroop Chaudhuri & Mimi Roy & Louis M. McDonald & Yves Emendack, 2023. "Land Degradation–Desertification in Relation to Farming Practices in India: An Overview of Current Practices and Agro-Policy Perspectives," Sustainability, MDPI, vol. 15(8), pages 1-27, April.
    7. Radwa A. El Behairy & Ahmed A. El Baroudy & Mahmoud M. Ibrahim & Elsayed Said Mohamed & Dmitry E. Kucher & Mohamed S. Shokr, 2022. "Assessment of Soil Capability and Crop Suitability Using Integrated Multivariate and GIS Approaches toward Agricultural Sustainability," Land, MDPI, vol. 11(7), pages 1-18, July.
    8. Asghari, Shiva & Zeinalzadeh, Kamran & Kheirfam, Hossein & Habibzadeh Azar, Behnam, 2022. "The impact of cyanobacteria inoculation on soil hydraulic properties at the lab-scale experiment," Agricultural Water Management, Elsevier, vol. 272(C).
    9. Elsayed A. Abdelsamie & Mostafa A. Abdellatif & Farag O. Hassan & Ahmed A. El Baroudy & Elsayed Said Mohamed & Dmitry E. Kucher & Mohamed S. Shokr, 2022. "Integration of RUSLE Model, Remote Sensing and GIS Techniques for Assessing Soil Erosion Hazards in Arid Zones," Agriculture, MDPI, vol. 13(1), pages 1-19, December.
    10. Alvyra Slepetiene & Mykola Kochiieru & Linas Jurgutis & Audrone Mankeviciene & Aida Skersiene & Olgirda Belova, 2022. "The Effect of Anaerobic Digestate on the Soil Organic Carbon and Humified Carbon Fractions in Different Land-Use Systems in Lithuania," Land, MDPI, vol. 11(1), pages 1-17, January.
    11. Sheikh Adil Edrisi & Vishal Tripathi & Purushothaman Chirakkuzhyil Abhilash, 2019. "Performance Analysis and Soil Quality Indexing for Dalbergia sissoo Roxb. Grown in Marginal and Degraded Land of Eastern Uttar Pradesh, India," Land, MDPI, vol. 8(4), pages 1-19, April.
    12. Ying-Tzy Jou & Elmi Junita Tarigan & Cahyo Prayogo & Chesly Kit Kobua & Yu-Ting Weng & Yu-Min Wang, 2022. "Effects of Sphingobium yanoikuyae SJTF8 on Rice ( Oryza sativa ) Seed Germination and Root Development," Agriculture, MDPI, vol. 12(11), pages 1-15, November.
    13. Romero, Pascual & Navarro, Josefa María & Ordaz, Pablo Botía, 2022. "Towards a sustainable viticulture: The combination of deficit irrigation strategies and agroecological practices in Mediterranean vineyards. A review and update," Agricultural Water Management, Elsevier, vol. 259(C).
    14. Ilaria Zambon & Artemi Cerdà & Sirio Cividino & Luca Salvati, 2019. "The (Evolving) Vineyard’s Age Structure in the Valencian Community, Spain: A New Demographic Approach for Rural Development and Landscape Analysis," Agriculture, MDPI, vol. 9(3), pages 1-13, March.
    15. Ilaria Zambon & Artemi Cerdà & Filippo Gambella & Gianluca Egidi & Luca Salvati, 2019. "Industrial Sprawl and Residential Housing: Exploring the Interplay between Local Development and Land-Use Change in the Valencian Community, Spain," Land, MDPI, vol. 8(10), pages 1-18, September.
    16. Jiani Ma & Chao Zhang & Wenju Yun & Yahui Lv & Wanling Chen & Dehai Zhu, 2020. "The Temporal Analysis of Regional Cultivated Land Productivity with GPP Based on 2000–2018 MODIS Data," Sustainability, MDPI, vol. 12(1), pages 1-16, January.
    17. Fullana-Pericàs, Mateu & Conesa, Miquel À. & Douthe, Cyril & El Aou-ouad, Hanan & Ribas-Carbó, Miquel & Galmés, Jeroni, 2019. "Tomato landraces as a source to minimize yield losses and improve fruit quality under water deficit conditions," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    18. Saskia Keesstra & Saskia Visser & Margot De Cleen, 2021. "Achieving Land Degradation Neutrality: A Robust Soil System Forms the Basis for Nature-Based Solutions," Land, MDPI, vol. 10(12), pages 1-4, November.
    19. Zheng, Haijin & Nie, Xiaofei & Liu, Zhao & Mo, Minghao & Song, Yuejun, 2021. "Identifying optimal ridge practices under different rainfall types on runoff and soil loss from sloping farmland in a humid subtropical region of Southern China," Agricultural Water Management, Elsevier, vol. 255(C).
    20. Jesús Barrena-González & Jesús Rodrigo-Comino & Yeboah Gyasi-Agyei & Manuel Pulido Fernández & Artemi Cerdà, 2020. "Applying the RUSLE and ISUM in the Tierra de Barros Vineyards (Extremadura, Spain) to Estimate Soil Mobilisation Rates," Land, MDPI, vol. 9(3), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:14866-:d:969133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.