IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v9y2020i2p49-d318635.html
   My bibliography  Save this article

Reducing Vulnerability to Desertification by Using the Spatial Measures in a Degraded Area in Thailand

Author

Listed:
  • Saowanee Wijitkosum

    (Environmental Research Institute, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand)

Abstract

The process of desertification is complex, involving interaction between many factors, both environmental and anthropogenic. However, human activities, especially from land-use change and inappropriate land use, are the most influential factors associated with the desertification risk. This study was conducted in Huay Sai, a degraded land in Thailand. The Environmentally Sensitive Area Index (ESAI) model incorporating Geogracphic Information System (GIS) was applied to investigate and map the desertification sensitivity area. The study aimed to analyze and assess measures to reduce the desertification risk. This study emphasized three group factors with nine subcriteria influencing desertification risk: soil (texture, fertility, drainage, slope gradient, and depth), climatic (precipitation and aridity index), and vegetation factors (land use and soil erosion). In terms of the required spatial measures to reduce the desertification vulnerability, policy and defensive measures that were closely related to drought and desertification of the area were considered. Three main measures covering soil and water conservation, soil improvement, and reforestation were implemented. The area development and restoration plans have been implemented continuously. The study found that 47.29% of the Huay Sai area was at a high risk, with a further 41.16% at a moderate risk. Implementation of three measures indicated that desertification risk was significantly decreased. Addressing the causes of the highest risk areas could help reduce the overall desertification risk at Huay Sai, where most areas would then be at either a moderate (61.04%) or low (32.43%) desertification risk with no severe- or high-risk areas. The success of the area restoration is from the formulation of a restoration and development plan that understands the local conditions. Moreover, the plan integrated the restoration of the soil, forests, and water together in order to restore the ecosystem so that the implementation was able to solve problems directly.

Suggested Citation

  • Saowanee Wijitkosum, 2020. "Reducing Vulnerability to Desertification by Using the Spatial Measures in a Degraded Area in Thailand," Land, MDPI, vol. 9(2), pages 1-20, February.
  • Handle: RePEc:gam:jlands:v:9:y:2020:i:2:p:49-:d:318635
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/9/2/49/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/9/2/49/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiaoming Feng & Bojie Fu & Shilong Piao & Shuai Wang & Philippe Ciais & Zhenzhong Zeng & Yihe Lü & Yuan Zeng & Yue Li & Xiaohui Jiang & Bingfang Wu, 2016. "Revegetation in China’s Loess Plateau is approaching sustainable water resource limits," Nature Climate Change, Nature, vol. 6(11), pages 1019-1022, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shidong Liu & Jianjun Zhang & Jie Zhang & Zheng Li & Yuhuan Geng & Yiqiang Guo, 2021. "Assessing Controversial Desertification Prevention Policies in Ecologically Fragile and Deeply Impoverished Areas: A Case Study of Marginal Parts of the Taklimakan Desert, China," Land, MDPI, vol. 10(6), pages 1-22, June.
    2. Margherita Carlucci & Rosanna Salvia & Giovanni Quaranta & Luca Salvati & Vito Imbrenda, 2022. "Official statistics, spatio-temporal dynamics and local-scale monitoring: toward integrated environmental-economic accounting for land degradation," Letters in Spatial and Resource Sciences, Springer, vol. 15(3), pages 469-491, December.
    3. Shaoqing Wang & Yanling Zhao & He Ren & Shichao Zhu & Yunhui Yang, 2023. "Identification of Ecological Risk “Source-Sink” Landscape Functions of Resource-Based Region: A Case Study in Liaoning Province, China," Land, MDPI, vol. 12(10), pages 1-23, October.
    4. Gerson Meza Mori & Cristóbal Torres Guzmán & Manuel Oliva-Cruz & Rolando Salas López & Gladys Marlo & Elgar Barboza, 2022. "Spatial Analysis of Environmentally Sensitive Areas to Soil Degradation Using MEDALUS Model and GIS in Amazonas (Peru): An Alternative for Ecological Restoration," Sustainability, MDPI, vol. 14(22), pages 1-20, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Shuai & Wang, Liang-Jie & Chu, Lei & Jiang, Jiang, 2023. "Determination of ecological restoration patterns based on water security and food security in arid regions," Agricultural Water Management, Elsevier, vol. 278(C).
    2. Jian, Yuqing & Liu, Zhengjia & Gong, Jianzhou, 2022. "Response of landscape dynamics to socio-economic development and biophysical setting across the farming-pastoral ecotone of northern China and its implications for regional sustainable land management," Land Use Policy, Elsevier, vol. 122(C).
    3. He, Zhihao & Gong, Kaiyuan & Zhang, Zhiliang & Dong, Wenbiao & Feng, Hao & Yu, Qiang & He, Jianqiang, 2022. "What is the past, present, and future of scientific research on the Yellow River Basin? —A bibliometric analysis," Agricultural Water Management, Elsevier, vol. 262(C).
    4. Vera, Ivan & Wicke, Birka & Lamers, Patrick & Cowie, Annette & Repo, Anna & Heukels, Bas & Zumpf, Colleen & Styles, David & Parish, Esther & Cherubini, Francesco & Berndes, Göran & Jager, Henriette & , 2022. "Land use for bioenergy: Synergies and trade-offs between sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    5. Cai, Liping & Wang, Hui & Liu, Yanxu & Fan, Donglin & Li, Xiaoxiao, 2022. "Is potential cultivated land expanding or shrinking in the dryland of China? Spatiotemporal evaluation based on remote sensing and SVM," Land Use Policy, Elsevier, vol. 112(C).
    6. Li, Sijia & Wang, Jinman & Zhang, Min & Tang, Qian, 2021. "Characterizing and attributing the vegetation coverage changes in North Shanxi coal base of China from 1987 to 2020," Resources Policy, Elsevier, vol. 74(C).
    7. Lu, Chengpeng & Ji, Wei & Hou, Muchen & Ma, Tianyang & Mao, Jinhuang, 2022. "Evaluation of efficiency and resilience of agricultural water resources system in the Yellow River Basin, China," Agricultural Water Management, Elsevier, vol. 266(C).
    8. M. K. Dhillon & P. M. Rafi-Ul-Shan & H. Amar & F. Sher & S. Ahmed, 2023. "Flexible Green Supply Chain Management in Emerging Economies: A Systematic Literature Review," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 24(1), pages 1-28, March.
    9. Li, Han & Si, Bing Cheng & Zhang, Zhiqiang & Miao, Changhong, 2022. "Deep soil water storage and drainage following conversion of deep rooted to shallow rooted vegetation," Agricultural Water Management, Elsevier, vol. 261(C).
    10. Liu, Bingxia & Jia, Xiaoxu & Shao, Ming'an & Jia, Yuhua, 2022. "Assessing soil water recovery after converting planted shrubs and grass to natural grass in the northern Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 264(C).
    11. Yang, Shanshan & Zhang, Jiahua & Wang, Jingwen & Zhang, Sha & Bai, Yun & Shi, Siqi & Cao, Dan, 2022. "Spatiotemporal variations of water productivity for cropland and driving factors over China during 2001–2015," Agricultural Water Management, Elsevier, vol. 262(C).
    12. Feng Chen & Hadad Martín & Xiaoen Zhao & Fidel Roig & Heli Zhang & Shijie Wang & Weipeng Yue & Youping Chen, 2022. "Abnormally low precipitation-induced ecological imbalance contributed to the fall of the Ming Dynasty: new evidence from tree rings," Climatic Change, Springer, vol. 173(1), pages 1-16, July.
    13. Yang, Yi & Li, Bingbing & Shi, Peijun & Li, Zhi, 2023. "Assessing spatiotemporally varied ecohydrological effects of apple orchards based on regional-scale estimation of tree distribution and ages," Agricultural Water Management, Elsevier, vol. 287(C).
    14. Xue, Shaobo & Ma, Bo & Wang, Chenguang & Li, Zhanbin, 2023. "Identifying key landscape pattern indices influencing the NPP: A case study of the upper and middle reaches of the Yellow River," Ecological Modelling, Elsevier, vol. 484(C).
    15. Zhao Li & Philippe Ciais & Jonathon S. Wright & Yong Wang & Shu Liu & Jingmeng Wang & Laurent Z. X. Li & Hui Lu & Xiaomeng Huang & Lei Zhu & Daniel S. Goll & Wei Li, 2023. "Increased precipitation over land due to climate feedback of large-scale bioenergy cultivation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    16. Zhang, Xinrong & Wang, Yongsheng & Yuan, Xuefeng & Shao, Yajing & Bai, Yu, 2022. "Identifying ecosystem service supply-demand imbalance for sustainable land management in China’s Loess Plateau," Land Use Policy, Elsevier, vol. 123(C).
    17. Qiuyue Li & Jihua Hou & Pu Yan & Li Xu & Zhi Chen & Hao Yang & Nianpeng He, 2020. "Regional response of grassland productivity to changing environment conditions influenced by limiting factors," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:9:y:2020:i:2:p:49-:d:318635. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.