IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i10p1921-d1260116.html
   My bibliography  Save this article

Identification of Ecological Risk “Source-Sink” Landscape Functions of Resource-Based Region: A Case Study in Liaoning Province, China

Author

Listed:
  • Shaoqing Wang

    (College of Geoscience and Surveying Engineering, China University of Mining & Technology, Beijing, D11 Xueyuan Road, Haidian District, Beijing 100083, China)

  • Yanling Zhao

    (College of Geoscience and Surveying Engineering, China University of Mining & Technology, Beijing, D11 Xueyuan Road, Haidian District, Beijing 100083, China)

  • He Ren

    (College of Geoscience and Surveying Engineering, China University of Mining & Technology, Beijing, D11 Xueyuan Road, Haidian District, Beijing 100083, China)

  • Shichao Zhu

    (College of Geoscience and Surveying Engineering, China University of Mining & Technology, Beijing, D11 Xueyuan Road, Haidian District, Beijing 100083, China)

  • Yunhui Yang

    (Shandong Urban and Rural Planning Design Institute, Jinan 250014, China)

Abstract

Ecological risk assessment plays an important role in ecosystem management and conservation. Conventional landscape-level assessment can only estimate the ecological risk level. It does not define ecological risk types, resulting in a lack of targeted regulation methods. This study establishes a model for identifying ecological risk-related “source-sink” landscape functions according to (1) “source-sink” landscape theory, (2) the responses of landscape types to ecological risks, and (3) the key influences on ecological risk. Four ecological risk “source-sink” landscape functions were mapped as a grid to understand their distribution. Natural and human activity factors were analyzed to determine their effects. After comprehensively considering the ecological risk levels, types of ecological risk, “source-sink” landscape functions, and their influencing factors, six principles and twenty-four targeted regulation strategies were proposed. Take the Liaoning province, China, as an example. The results prove that more than 80% of the grids were affected by the ecological risk “sink” landscape function for different and multiple ecological risks in the study area. Landscapes with the “source” function were mainly located in central cities and coastal areas. About 65% of the grids with “sink” landscape functions had medium, moderate-high, and high ecological risks. More than 75% of the grids with “source” landscape functions had medium, moderate-low, and low ecological risks. Local terrain features, vegetation, and climate were closely related to the “source” or “sink” landscape function of a grid. The land use type converted to artificial surface had the highest driving effects (q value) on multiple ecological risk “source-sink” landscape functions, and had a significant difference between other factors. The driving effects of land use type converted to artificial surface and road network density gradually increased with the risk level. The influences of GDP and population density gradually weakened with the level. The influence of interaction between any two factors was stronger than the influence of a single factor on ecological risk. The proposed assessment model can help to identify specific ecological risk at the grid level, and combined with the regulation strategy, the scientific basis can be provided for the regulation and management of different ecological risks.

Suggested Citation

  • Shaoqing Wang & Yanling Zhao & He Ren & Shichao Zhu & Yunhui Yang, 2023. "Identification of Ecological Risk “Source-Sink” Landscape Functions of Resource-Based Region: A Case Study in Liaoning Province, China," Land, MDPI, vol. 12(10), pages 1-23, October.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:10:p:1921-:d:1260116
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/10/1921/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/10/1921/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yanyan Jia & Xiaolan Tang & Wei Liu, 2020. "Spatial–Temporal Evolution and Correlation Analysis of Ecosystem Service Value and Landscape Ecological Risk in Wuhu City," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
    2. Desirée Tullos & Elizabeth Byron & Gerald Galloway & Jayantha Obeysekera & Om Prakash & Yung-Hsin Sun, 2016. "Review of challenges of and practices for sustainable management of mountain flood hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1763-1797, September.
    3. Shuhan Liu & Dongyan Wang & Guoping Lei & Hong Li & Wenbo Li, 2019. "Elevated Risk of Ecological Land and Underlying Factors Associated with Rapid Urbanization and Overprotected Agriculture in Northeast China," Sustainability, MDPI, vol. 11(22), pages 1-18, November.
    4. Zhou, Yang & Li, Xunhuan & Liu, Yansui, 2020. "Land use change and driving factors in rural China during the period 1995-2015," Land Use Policy, Elsevier, vol. 99(C).
    5. Zhenhua Wu & Shaogang Lei & Bao-Jie He & Zhengfu Bian & Yinghong Wang & Qingqing Lu & Shangui Peng & Linghua Duo, 2019. "Assessment of Landscape Ecological Health: A Case Study of a Mining City in a Semi-Arid Steppe," IJERPH, MDPI, vol. 16(5), pages 1-21, March.
    6. Saowanee Wijitkosum, 2020. "Reducing Vulnerability to Desertification by Using the Spatial Measures in a Degraded Area in Thailand," Land, MDPI, vol. 9(2), pages 1-20, February.
    7. Xi Chen & Dawei Xu & Safa Fadelelseed & Lianying Li, 2019. "Spatiotemporal Analysis and Control of Landscape Eco-Security at the Urban Fringe in Shrinking Resource Cities: A Case Study in Daqing, China," IJERPH, MDPI, vol. 16(23), pages 1-26, November.
    8. Ramesh P. Rudra & Balew A. Mekonnen & Rituraj Shukla & Narayan Kumar Shrestha & Pradeep K. Goel & Prasad Daggupati & Asim Biswas, 2020. "Currents Status, Challenges, and Future Directions in Identifying Critical Source Areas for Non-Point Source Pollution in Canadian Conditions," Agriculture, MDPI, vol. 10(10), pages 1-25, October.
    9. Jian Peng & Minli Zong & Yi'na Hu & Yanxu Liu & Jiansheng Wu, 2015. "Assessing Landscape Ecological Risk in a Mining City: A Case Study in Liaoyuan City, China," Sustainability, MDPI, vol. 7(7), pages 1-23, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xueqing Wang & Zhongyi Ding & Shaoliang Zhang & Huping Hou & Zanxu Chen & Qinyu Wu, 2022. "Spatial–Temporal Multivariate Correlation Analysis of Ecosystem Services and Ecological Risk in Areas of Overlapped Cropland and Coal Resources in the Eastern Plains, China," Land, MDPI, vol. 12(1), pages 1-16, December.
    2. Shanshan Hu & Xiangjun Cheng & Demin Zhou & Hong Zhang, 2017. "GIS-based flood risk assessment in suburban areas: a case study of the Fangshan District, Beijing," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1525-1543, July.
    3. Weijia Chen & Yongquan Lu & Guilin Liu, 2022. "Balancing cropland gain and desert vegetation loss: The key to rural revitalization in Xinjiang, China," Growth and Change, Wiley Blackwell, vol. 53(3), pages 1122-1145, September.
    4. Juan Li & Xunzhou Chunyu & Feng Huang, 2022. "Land Use Pattern Changes and the Driving Forces in the Shiyang River Basin from 2000 to 2018," Sustainability, MDPI, vol. 15(1), pages 1-27, December.
    5. Wancong Li & Hong Li & Shijun Wang & Zhiqiang Feng, 2022. "Spatiotemporal Evolution of County-Level Land Use Structure in the Context of Urban Shrinkage: Evidence from Northeast China," Land, MDPI, vol. 11(10), pages 1-19, October.
    6. Liu, Yansui & Zhou, Yang, 2021. "Territory spatial planning and national governance system in China," Land Use Policy, Elsevier, vol. 102(C).
    7. Yanrong Lu & Chen Wang & Rongjin Yang & Meiying Sun & Le Zhang & Yuying Zhang & Xiuhong Li, 2023. "Research on the Progress of Agricultural Non-Point Source Pollution Management in China: A Review," Sustainability, MDPI, vol. 15(18), pages 1-14, September.
    8. Han Huang & Yang Zhou & Mingjie Qian & Zhaoqi Zeng, 2021. "Land Use Transition and Driving Forces in Chinese Loess Plateau: A Case Study from Pu County, Shanxi Province," Land, MDPI, vol. 10(1), pages 1-15, January.
    9. Palola, Pirta & Bailey, Richard & Wedding, Lisa, 2022. "A novel framework to operationalise value-pluralism in environmental valuation: Environmental value functions," Ecological Economics, Elsevier, vol. 193(C).
    10. Di Liu & Xiaoying Liang & Hai Chen & Hang Zhang & Nanzhao Mao, 2018. "A Quantitative Assessment of Comprehensive Ecological Risk for a Loess Erosion Gully: A Case Study of Dujiashi Gully, Northern Shaanxi Province, China," Sustainability, MDPI, vol. 10(9), pages 1-16, September.
    11. Jiayu Kang & Xuejun Duan & Ruxian Yun, 2023. "The Impact of Urbanization on Food Security: A Case Study of Jiangsu Province," Land, MDPI, vol. 12(9), pages 1-16, August.
    12. Liu, Yansui & Zhou, Yang, 2021. "Reflections on China's food security and land use policy under rapid urbanization," Land Use Policy, Elsevier, vol. 109(C).
    13. Yanbo Duan & Yu Gary Gao & Yusen Zhang & Huawei Li & Zhonghui Li & Ziying Zhou & Guohang Tian & Yakai Lei, 2022. "“The 20 July 2021 Major Flood Event” in Greater Zhengzhou, China: A Case Study of Flooding Severity and Landscape Characteristics," Land, MDPI, vol. 11(11), pages 1-23, October.
    14. Dilshad Ahmad & Malika Kanwal & Muhammad Afzal, 2023. "Climate change effects on riverbank erosion Bait community flood-prone area of Punjab, Pakistan: an application of livelihood vulnerability index," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 9387-9415, September.
    15. Youlin Chen & Lei Wang & Peiheng Yu & Ning Nie & Xuan Yang & Yiyun Chen, 2023. "Spatiotemporal Linkages between Administrative Division Adjustment and Urban Form: Political Drivers of the Urban Polycentric Structure," Land, MDPI, vol. 12(9), pages 1-27, August.
    16. Wencun Zhou & Zhengjia Liu & Sisi Wang, 2023. "Spatiotemporal Dynamics of the Cropland Area and Its Response to Increasing Regional Extreme Weather Events in the Farming-Pastoral Ecotone of Northern China during 1992–2020," Sustainability, MDPI, vol. 15(18), pages 1-28, September.
    17. Yunfei Peng & Fangling Yang & Lingwei Zhu & Ruru Li & Chao Wu & Deng Chen, 2021. "Comparative Analysis of the Factors Influencing Land Use Change for Emerging Industry and Traditional Industry: A Case Study of Shenzhen City, China," Land, MDPI, vol. 10(6), pages 1-17, May.
    18. Tianlin Zhai & Jing Wang & Ying Fang & Jingjing Liu & Longyang Huang & Kun Chen & Chenchen Zhao, 2021. "Identification and Prediction of Wetland Ecological Risk in Key Cities of the Yangtze River Economic Belt: From the Perspective of Land Development," Sustainability, MDPI, vol. 13(1), pages 1-17, January.
    19. Yuri B. Kirsta & Ol’ga V. Lovtskaya, 2021. "Good-quality Long-term Forecast of Spring-summer Flood Runoff for Mountain Rivers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 811-825, February.
    20. Chan Chen & Jie Li & Jian Huang, 2022. "Spatial–Temporal Patterns of Population Aging in Rural China," IJERPH, MDPI, vol. 19(23), pages 1-18, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:10:p:1921-:d:1260116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.