IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v470y2022ics0304380022001247.html
   My bibliography  Save this article

One size does not fit all: Priority areas for real world problems

Author

Listed:
  • Pimenta, Mayra
  • Andrade, André Felipe Alves de
  • Fernandes, Fernando Hiago Souza
  • Amboni, Mayra Pereira de Melo
  • Almeida, Renata Silva
  • Soares, Ana Hermínia Simões de Bello
  • Falcon, Guth Berger
  • Raíces, Daniel Santana Lorenzo
  • De Marco Júnior, Paulo

Abstract

Recently, much effort has been expended to improve Species Distribution Models (SDMs), particularly for use in systematic conservation planning, as they affect the arrangement and effectiveness of spatial prioritization. Protocol definition to create SMDs is a real and complex problem faced to protect threatened environments in large megadiverse areas, such as the Amazon basin. We compare spatial prioritizations based on different protocols to generate general and specific models of multiple taxa. While in general protocols we use only bioclimatic variables, in specific protocols we also added different environmental variables that are more appropriate to the sets of related species. Our results show greater precision and less commission error in the final models adjusted with specific protocols, especially for aquatic species with the inclusion of hydrological variables. We also demonstrate that modeling choices can play an important role in determining the priority of a region, with prioritization of different areas depending on the models adjusted based on general and specific protocols. We argue that niche models for multi-taxon prioritization studies should be more efficient when based on choices that capture the ecological requirements of different taxonomic groups.

Suggested Citation

  • Pimenta, Mayra & Andrade, André Felipe Alves de & Fernandes, Fernando Hiago Souza & Amboni, Mayra Pereira de Melo & Almeida, Renata Silva & Soares, Ana Hermínia Simões de Bello & Falcon, Guth Berger &, 2022. "One size does not fit all: Priority areas for real world problems," Ecological Modelling, Elsevier, vol. 470(C).
  • Handle: RePEc:eee:ecomod:v:470:y:2022:i:c:s0304380022001247
    DOI: 10.1016/j.ecolmodel.2022.110013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380022001247
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2022.110013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luciana L Porfirio & Rebecca M B Harris & Edward C Lefroy & Sonia Hugh & Susan F Gould & Greg Lee & Nathaniel L Bindoff & Brendan Mackey, 2014. "Improving the Use of Species Distribution Models in Conservation Planning and Management under Climate Change," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-21, November.
    2. Santiago José Elías Velazco & Franklin Galvão & Fabricio Villalobos & Paulo De Marco Júnior, 2017. "Using worldwide edaphic data to model plant species niches: An assessment at a continental extent," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-24, October.
    3. Parreira, Micael Rosa & Nabout, João Carlos & Tessarolo, Geiziane & de Souza Lima-Ribeiro, Matheus & Teresa, Fabrício Barreto, 2019. "Disentangling uncertainties from niche modeling in freshwater ecosystems," Ecological Modelling, Elsevier, vol. 391(C), pages 1-8.
    4. Sean P Beeman & Andrea M Morrison & Thomas R Unnasch & Robert S Unnasch, 2021. "Ensemble ecological niche modeling of West Nile virus probability in Florida," PLOS ONE, Public Library of Science, vol. 16(10), pages 1-23, October.
    5. C. R. Margules & R. L. Pressey, 2000. "Systematic conservation planning," Nature, Nature, vol. 405(6783), pages 243-253, May.
    6. Mendes, Poliana & Velazco, Santiago José Elías & Andrade, André Felipe Alves de & De Marco, Paulo, 2020. "Dealing with overprediction in species distribution models: How adding distance constraints can improve model accuracy," Ecological Modelling, Elsevier, vol. 431(C).
    7. Paulo De Marco Júnior & Caroline Corrêa Nóbrega, 2018. "Evaluating collinearity effects on species distribution models: An approach based on virtual species simulation," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-25, September.
    8. Barve, Narayani & Barve, Vijay & Jiménez-Valverde, Alberto & Lira-Noriega, Andrés & Maher, Sean P. & Peterson, A. Townsend & Soberón, Jorge & Villalobos, Fabricio, 2011. "The crucial role of the accessible area in ecological niche modeling and species distribution modeling," Ecological Modelling, Elsevier, vol. 222(11), pages 1810-1819.
    9. Anderson, Robert P. & Gonzalez, Israel, 2011. "Species-specific tuning increases robustness to sampling bias in models of species distributions: An implementation with Maxent," Ecological Modelling, Elsevier, vol. 222(15), pages 2796-2811.
    10. Karatzoglou, Alexandros & Smola, Alexandros & Hornik, Kurt & Zeileis, Achim, 2004. "kernlab - An S4 Package for Kernel Methods in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 11(i09).
    11. Domisch, Sami & Kuemmerlen, Mathias & Jähnig, Sonja C. & Haase, Peter, 2013. "Choice of study area and predictors affect habitat suitability projections, but not the performance of species distribution models of stream biota," Ecological Modelling, Elsevier, vol. 257(C), pages 1-10.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Santiago José Elías Velazco & Franklin Galvão & Fabricio Villalobos & Paulo De Marco Júnior, 2017. "Using worldwide edaphic data to model plant species niches: An assessment at a continental extent," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-24, October.
    2. Mendes, Poliana & Velazco, Santiago José Elías & Andrade, André Felipe Alves de & De Marco, Paulo, 2020. "Dealing with overprediction in species distribution models: How adding distance constraints can improve model accuracy," Ecological Modelling, Elsevier, vol. 431(C).
    3. Wolke Tobón-Niedfeldt & Alicia Mastretta-Yanes & Tania Urquiza-Haas & Bárbara Goettsch & Angela P. Cuervo-Robayo & Esmeralda Urquiza-Haas & M. Andrea Orjuela-R & Francisca Acevedo Gasman & Oswaldo Oli, 2022. "Incorporating evolutionary and threat processes into crop wild relatives conservation," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    4. Fourcade, Yoan, 2021. "Fine-tuning niche models matters in invasion ecology. A lesson from the land planarian Obama nungara," Ecological Modelling, Elsevier, vol. 457(C).
    5. Ochoa-Ochoa, Leticia M. & Flores-Villela, Oscar A. & Bezaury-Creel, Juan E., 2016. "Using one vs. many, sensitivity and uncertainty analyses of species distribution models with focus on conservation area networks," Ecological Modelling, Elsevier, vol. 320(C), pages 372-382.
    6. Sillero, Neftalí & Arenas-Castro, Salvador & Enriquez‐Urzelai, Urtzi & Vale, Cândida Gomes & Sousa-Guedes, Diana & Martínez-Freiría, Fernando & Real, Raimundo & Barbosa, A.Márcia, 2021. "Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling," Ecological Modelling, Elsevier, vol. 456(C).
    7. John M. Humphreys & Robert B. Srygley & David H. Branson, 2022. "Geographic Variation in Migratory Grasshopper Recruitment under Projected Climate Change," Geographies, MDPI, vol. 2(1), pages 1-19, January.
    8. Herkt, K. Matthias B. & Barnikel, Günter & Skidmore, Andrew K. & Fahr, Jakob, 2016. "A high-resolution model of bat diversity and endemism for continental Africa," Ecological Modelling, Elsevier, vol. 320(C), pages 9-28.
    9. Boria, Robert A. & Olson, Link E. & Goodman, Steven M. & Anderson, Robert P., 2014. "Spatial filtering to reduce sampling bias can improve the performance of ecological niche models," Ecological Modelling, Elsevier, vol. 275(C), pages 73-77.
    10. Parreira, Micael Rosa & Nabout, João Carlos & Tessarolo, Geiziane & de Souza Lima-Ribeiro, Matheus & Teresa, Fabrício Barreto, 2019. "Disentangling uncertainties from niche modeling in freshwater ecosystems," Ecological Modelling, Elsevier, vol. 391(C), pages 1-8.
    11. Dany A. Cotrina Sánchez & Elgar Barboza Castillo & Nilton B. Rojas Briceño & Manuel Oliva & Cristóbal Torres Guzman & Carlos A. Amasifuen Guerra & Subhajit Bandopadhyay, 2020. "Distribution Models of Timber Species for Forest Conservation and Restoration in the Andean-Amazonian Landscape, North of Peru," Sustainability, MDPI, vol. 12(19), pages 1-20, September.
    12. Carlos Mestanza-Ramón & Robinson J. Herrera Feijoo & Cristhian Chicaiza-Ortiz & Isabel Domínguez Gaibor & Rubén G. Mateo, 2021. "Estimation of Current and Future Suitable Areas for Tapirus pinchaque in Ecuador," Sustainability, MDPI, vol. 13(20), pages 1-14, October.
    13. Kangas, Johanna & Ollikainen, Markku, 2022. "A PES scheme promoting forest biodiversity and carbon sequestration," Forest Policy and Economics, Elsevier, vol. 136(C).
    14. Tsukioka, Yasutomo & Yanagi, Junya & Takada, Teruko, 2018. "Investor sentiment extracted from internet stock message boards and IPO puzzles," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 205-217.
    15. Wiltshire, Kathryn H & Tanner, Jason E, 2020. "Comparing maximum entropy modelling methods to inform aquaculture site selection for novel seaweed species," Ecological Modelling, Elsevier, vol. 429(C).
    16. Tamara S. Wilson & Benjamin M. Sleeter & Rachel R. Sleeter & Christopher E. Soulard, 2014. "Land-Use Threats and Protected Areas: A Scenario-Based, Landscape Level Approach," Land, MDPI, vol. 3(2), pages 1-28, April.
    17. Alsamadisi, Adam G. & Tran, Liem T. & Papeş, Monica, 2020. "Employing inferences across scales: Integrating spatial data with different resolutions to enhance Maxent models," Ecological Modelling, Elsevier, vol. 415(C).
    18. Daniel J. Luckett & Eric B. Laber & Samer S. El‐Kamary & Cheng Fan & Ravi Jhaveri & Charles M. Perou & Fatma M. Shebl & Michael R. Kosorok, 2021. "Receiver operating characteristic curves and confidence bands for support vector machines," Biometrics, The International Biometric Society, vol. 77(4), pages 1422-1430, December.
    19. Auriel M. V. Fournier & R. Randy Wilson & Jeffrey S. Gleason & Evan M. Adams & Janell M. Brush & Robert J. Cooper & Stephen J. DeMaso & Melanie J. L. Driscoll & Peter C. Frederick & Patrick G. R. Jodi, 2023. "Structured Decision Making to Prioritize Regional Bird Monitoring Needs," Interfaces, INFORMS, vol. 53(3), pages 207-217, May.
    20. Grabisch, Michel & Kojadinovic, Ivan & Meyer, Patrick, 2008. "A review of methods for capacity identification in Choquet integral based multi-attribute utility theory: Applications of the Kappalab R package," European Journal of Operational Research, Elsevier, vol. 186(2), pages 766-785, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:470:y:2022:i:c:s0304380022001247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.