IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i9p2502-d226880.html
   My bibliography  Save this article

A Calculation Model for CO 2 Emission Reduction of Energy Internet: A Case Study of Yanqing

Author

Listed:
  • Shuxia Yang

    (Beijing Key Laboratory of New Energy and Low-Carbon Development, North China Electric Power University, Beijing 102206, China)

  • Di Zhang

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

  • Dongyan Li

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

Abstract

This paper takes the regional energy internet as the research object, and combines the power system, primary energy system, transportation system, and thermal energy system to give the system boundary. First, the mathematical decomposition method and the logical integration method were combined to decompose the total low-carbon capability into seven single low-carbon capabilities. On the basis of the mechanism of carbon emission reduction, a comprehensive calculation model for CO 2 emissions reduction of the energy internet was then established. Finally, taking the Yanqing Energy Internet Demonstration Zone in China as an example, it was calculated that the model could reduce CO 2 emissions by 14,093.19 tons in 2025. The results show that the methods adopted in this paper avoided the overlap calculation reasonably well; the comprehensive calculation model of CO 2 emissions reduction has strong versatility, and can quantitatively calculate the carbon emission reduction amount for any completed or planned energy internet. Among the seven low-carbon capabilities, “replacement of gasoline with electricity” had the highest contribution rate, with a value of 42.62%, followed by “renewable energy substitution” (37.13%). The innovations in this paper include: (1) The problem of reasonable splitting of the overlapping parts in carbon emission reduction calculations being solved. (2) The first comprehensive calculation model of CO 2 emission reduction on the energy internet being established. (3) The contribution of the seven low-carbon capabilities of the energy internet to total emissions reduction being clarified.

Suggested Citation

  • Shuxia Yang & Di Zhang & Dongyan Li, 2019. "A Calculation Model for CO 2 Emission Reduction of Energy Internet: A Case Study of Yanqing," Sustainability, MDPI, vol. 11(9), pages 1-21, April.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:9:p:2502-:d:226880
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/9/2502/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/9/2502/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Martin-Martínez, F. & Sánchez-Miralles, A. & Rivier, M., 2016. "A literature review of Microgrids: A functional layer based classification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1133-1153.
    2. Haisheng Chen & Xinjing Zhang & Jinchao Liu & Chunqing Tan, 2013. "Compressed Air Energy Storage," Chapters, in: Ahmed F. Zobaa (ed.), Energy Storage - Technologies and Applications, IntechOpen.
    3. Mi, Zhifu & Zhang, Yunkun & Guan, Dabo & Shan, Yuli & Liu, Zhu & Cong, Ronggang & Yuan, Xiao-Chen & Wei, Yi-Ming, 2016. "Consumption-based emission accounting for Chinese cities," Applied Energy, Elsevier, vol. 184(C), pages 1073-1081.
    4. Tarroja, Brian & Shaffer, Brendan & Samuelsen, Scott, 2015. "The importance of grid integration for achievable greenhouse gas emissions reductions from alternative vehicle technologies," Energy, Elsevier, vol. 87(C), pages 504-519.
    5. Zhou, Kaile & Yang, Shanlin & Shao, Zhen, 2016. "Energy Internet: The business perspective," Applied Energy, Elsevier, vol. 178(C), pages 212-222.
    6. Xiaojiao Tong & Hailin Sun & Xiao Luo & Quanguo Zheng, 2018. "Distributionally robust chance constrained optimization for economic dispatch in renewable energy integrated systems," Journal of Global Optimization, Springer, vol. 70(1), pages 131-158, January.
    7. Jinzhao Song & Qing Feng & Xiaoping Wang & Hanliang Fu & Wei Jiang & Baiyu Chen, 2018. "Spatial Association and Effect Evaluation of CO 2 Emission in the Chengdu-Chongqing Urban Agglomeration: Quantitative Evidence from Social Network Analysis," Sustainability, MDPI, vol. 11(1), pages 1-19, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lefeng Cheng & Zhiyi Zhang & Haorong Jiang & Tao Yu & Wenrui Wang & Weifeng Xu & Jinxiu Hua, 2018. "Local Energy Management and Optimization: A Novel Energy Universal Service Bus System Based on Energy Internet Technologies," Energies, MDPI, vol. 11(5), pages 1-38, May.
    2. Yang, Dechang & Wang, Ming & Yang, Ruiqi & Zheng, Yingying & Pandzic, Hrvoje, 2021. "Optimal dispatching of an energy system with integrated compressed air energy storage and demand response," Energy, Elsevier, vol. 234(C).
    3. Liu, Jin-Long & Wang, Jian-Hua, 2015. "Thermodynamic analysis of a novel tri-generation system based on compressed air energy storage and pneumatic motor," Energy, Elsevier, vol. 91(C), pages 420-429.
    4. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    5. Dib, Ghady & Haberschill, Philippe & Rullière, Romuald & Revellin, Rémi, 2021. "Modelling small-scale trigenerative advanced adiabatic compressed air energy storage for building application," Energy, Elsevier, vol. 237(C).
    6. Guo, Cong & Xu, Yujie & Zhang, Xinjing & Guo, Huan & Zhou, Xuezhi & Liu, Chang & Qin, Wei & Li, Wen & Dou, Binlin & Chen, Haisheng, 2017. "Performance analysis of compressed air energy storage systems considering dynamic characteristics of compressed air storage," Energy, Elsevier, vol. 135(C), pages 876-888.
    7. Bossink, Bart A.G., 2017. "Demonstrating sustainable energy: A review based model of sustainable energy demonstration projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1349-1362.
    8. Zhai, Yijie & Ma, Xiaotian & Gao, Feng & Zhang, Tianzuo & Hong, Jinglan & Zhang, Xu & Yuan, Xueliang & Li, Xiangzhi, 2020. "Is energy the key to pursuing clean air and water at the city level? A case study of Jinan City, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    9. Zhang, Kun & Cao, Yiyi & Liu, Zhouyi & Zhou, Qi & Qu, Shen & Wei, Yi-Ming, 2024. "Allocation of carbon emission responsibility among Chinese cities guided by economic welfare gains: Case study based on multi-regional input-output analysis," Applied Energy, Elsevier, vol. 376(PA).
    10. Jia, Kunqi & Guo, Ge & Xiao, Jucheng & Zhou, Huan & Wang, Zhihua & He, Guangyu, 2019. "Data compression approach for the home energy management system," Applied Energy, Elsevier, vol. 247(C), pages 643-656.
    11. Meng, Hui & Wang, Meihong & Olumayegun, Olumide & Luo, Xiaobo & Liu, Xiaoyan, 2019. "Process design, operation and economic evaluation of compressed air energy storage (CAES) for wind power through modelling and simulation," Renewable Energy, Elsevier, vol. 136(C), pages 923-936.
    12. Wenting Zhang & Minxing Yue, 2021. "The application of building energy management system based on IoT technology in smart city," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(4), pages 617-628, August.
    13. Li, Jia Shuo & Zhou, H.W. & Meng, Jing & Yang, Q. & Chen, B. & Zhang, Y.Y., 2018. "Carbon emissions and their drivers for a typical urban economy from multiple perspectives: A case analysis for Beijing city," Applied Energy, Elsevier, vol. 226(C), pages 1076-1086.
    14. Zhang, Hong & Jin, Gui & Zhang, Zhengyu, 2021. "Coupling system of carbon emission and social economy: A review," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    15. Xin Wang & Jun Yang & Lei Chen & Jifeng He, 2017. "Application of Liquid Hydrogen with SMES for Efficient Use of Renewable Energy in the Energy Internet," Energies, MDPI, vol. 10(2), pages 1-20, February.
    16. Bostan, Alireza & Nazar, Mehrdad Setayesh & Shafie-khah, Miadreza & Catalão, João P.S., 2020. "Optimal scheduling of distribution systems considering multiple downward energy hubs and demand response programs," Energy, Elsevier, vol. 190(C).
    17. Zhong, Zhangqi & Jiang, Lei & Zhou, Peng, 2018. "Transnational transfer of carbon emissions embodied in trade: Characteristics and determinants from a spatial perspective," Energy, Elsevier, vol. 147(C), pages 858-875.
    18. Tarroja, Brian & Hittinger, Eric, 2021. "The value of consumer acceptance of controlled electric vehicle charging in a decarbonizing grid: The case of California," Energy, Elsevier, vol. 229(C).
    19. Zhou, Dequn & Zhou, Xiaoyong & Xu, Qing & Wu, Fei & Wang, Qunwei & Zha, Donglan, 2018. "Regional embodied carbon emissions and their transfer characteristics in China," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 180-193.
    20. Huang, Shucheng & Khajepour, Amir, 2022. "A new adiabatic compressed air energy storage system based on a novel compression strategy," Energy, Elsevier, vol. 242(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:9:p:2502-:d:226880. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.