IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i5p1394-d211501.html
   My bibliography  Save this article

Quantifying Spatio-Temporal Patterns of Rice Yield Gaps in Double-Cropping Systems: A Case Study in Pearl River Delta, China

Author

Listed:
  • Yahui Guo

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

  • Wenxiang Wu

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences (CAS), Beijing 100101, China)

  • Christopher Robin Bryant

    (School of Environmental Design and Rural Development, University of Guelph, Guelph, ON N1G2W5, Canada
    Géographie, Université de Montréal, Montréal, QC H2V2B8, Canada)

Abstract

Quantifying the contributing and limiting factors of yield potential is of vital importance, and the closure of existing yield gaps on currently available agricultural land is regarded as the most effective measure to meet future food demands. In this study, the CERES-Rice model and long-term rice yield records of 12 sites from 1981 to 2010 were combined together to investigate the spatial and temporal distributions of yield potential, yield attainable, yield actual, and yield gaps for double cropping rice in the Pearl River Delta (PRD), China. The evaluated yield potential of all the sites ranged from 7500 to 14,900 kg/ha, while yield attainable was from 6400 to 12,665 kg/ha, and yield actual was from 4000 to 7000 kg/ha. The yield gaps between yield potential and yield actual, yield potential and yield attainable, and yield attainable and yield actual were projected to be 3500 kg/ha, 1400 kg/ha, and 2100 kg/ha, respectively. The decrease of yield potential was due to the increasing temperature for early mature rice and the prolonged sunshine hours for the yield potential of late mature rice, respectively. The social–economic impacts of yield actual were also assessed, and adaptive measures were simulated so that the yield would certainly increase.

Suggested Citation

  • Yahui Guo & Wenxiang Wu & Christopher Robin Bryant, 2019. "Quantifying Spatio-Temporal Patterns of Rice Yield Gaps in Double-Cropping Systems: A Case Study in Pearl River Delta, China," Sustainability, MDPI, vol. 11(5), pages 1-22, March.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:5:p:1394-:d:211501
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/5/1394/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/5/1394/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guodong Sun & Mu Mu, 2013. "Understanding variations and seasonal characteristics of net primary production under two types of climate change scenarios in China using the LPJ model," Climatic Change, Springer, vol. 120(4), pages 755-769, October.
    2. Timsina, J. & Humphreys, E., 2006. "Performance of CERES-Rice and CERES-Wheat models in rice-wheat systems: A review," Agricultural Systems, Elsevier, vol. 90(1-3), pages 5-31, October.
    3. Deepak K. Ray & Navin Ramankutty & Nathaniel D. Mueller & Paul C. West & Jonathan A. Foley, 2012. "Recent patterns of crop yield growth and stagnation," Nature Communications, Nature, vol. 3(1), pages 1-7, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yahui Guo & Wenxiang Wu & Mingzhu Du & Christopher Robin Bryant & Yong Li & Yuyi Wang & Han Huang, 2019. "Assessing Potential Climate Change Impacts and Adaptive Measures on Rice Yields: The Case of Zhejiang Province in China," Sustainability, MDPI, vol. 11(8), pages 1-22, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, He & Tao, Fulu & Zhou, Guangsheng, 2019. "Potential yields, yield gaps, and optimal agronomic management practices for rice production systems in different regions of China," Agricultural Systems, Elsevier, vol. 171(C), pages 100-112.
    2. Gupta, Rishabh & Mishra, Ashok, 2019. "Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India," Agricultural Systems, Elsevier, vol. 173(C), pages 1-11.
    3. Cao, Juan & Zhang, Zhao & Tao, Fulu & Chen, Yi & Luo, Xiangzhong & Xie, Jun, 2023. "Forecasting global crop yields based on El Nino Southern Oscillation early signals," Agricultural Systems, Elsevier, vol. 205(C).
    4. Meike Weltin & Silke Hüttel, 2023. "Sustainable Intensification Farming as an Enabler for Farm Eco-Efficiency?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(1), pages 315-342, January.
    5. Manogna R. L. & Aswini Kumar Mishra, 2022. "Agricultural production efficiency of Indian states: Evidence from data envelopment analysis," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4244-4255, October.
    6. Rada, Nicholas E., 2013. "Agricultural Growth in India: Examining the Post-Green Revolution Transition," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 149547, Agricultural and Applied Economics Association.
    7. Terrance Hurley & Jawoo Koo & Kindie Tesfaye, 2018. "Weather risk: how does it change the yield benefits of nitrogen fertilizer and improved maize varieties in sub‐Saharan Africa?," Agricultural Economics, International Association of Agricultural Economists, vol. 49(6), pages 711-723, November.
    8. J. Vernon Henderson & Sebastian Kriticos, 2018. "The Development of the African System of Cities," Annual Review of Economics, Annual Reviews, vol. 10(1), pages 287-314, August.
    9. Zhongen Niu & Huimin Yan & Fang Liu, 2020. "Decreasing Cropping Intensity Dominated the Negative Trend of Cropland Productivity in Southern China in 2000–2015," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    10. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, vol. 8(3), pages 1-41, March.
    11. Marie Lassalas & Sabine Duvaleix & Laure Latruffe, 2024. "The technical and economic effects of biodiversity standards on wheat production," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 51(2), pages 275-308.
    12. Ning Luo & Qingfeng Meng & Puyu Feng & Ziren Qu & Yonghong Yu & De Li Liu & Christoph Müller & Pu Wang, 2023. "China can be self-sufficient in maize production by 2030 with optimal crop management," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Zhang, Bangbang & Li, Xian & Chen, Haibin & Niu, Wenhao & Kong, Xiangbin & Yu, Qiang & Zhao, Minjuan & Xia, Xianli, 2022. "Identifying opportunities to close yield gaps in China by use of certificated cultivars to estimate potential productivity," Land Use Policy, Elsevier, vol. 117(C).
    14. Coronese, Matteo & Occelli, Martina & Lamperti, Francesco & Roventini, Andrea, 2023. "AgriLOVE: Agriculture, land-use and technical change in an evolutionary, agent-based model," Ecological Economics, Elsevier, vol. 208(C).
    15. Haidong Zhao & Lina Zhang & M. B. Kirkham & Stephen M. Welch & John W. Nielsen-Gammon & Guihua Bai & Jiebo Luo & Daniel A. Andresen & Charles W. Rice & Nenghan Wan & Romulo P. Lollato & Dianfeng Zheng, 2022. "U.S. winter wheat yield loss attributed to compound hot-dry-windy events," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. Anshuman Gunawat & Devesh Sharma & Aditya Sharma & Swatantra Kumar Dubey, 2022. "Assessment of climate change impact and potential adaptation measures on wheat yield using the DSSAT model in the semi-arid environment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 2077-2096, March.
    17. Kamini Yadav & Hatim M. E. Geli, 2021. "Prediction of Crop Yield for New Mexico Based on Climate and Remote Sensing Data for the 1920–2019 Period," Land, MDPI, vol. 10(12), pages 1-27, December.
    18. Michelson, Hope & Fairbairn, Anna & Ellison, Brenna & Maertens, Annemie & Manyong, Victor, 2021. "Misperceived quality: Fertilizer in Tanzania," Journal of Development Economics, Elsevier, vol. 148(C).
    19. John Baffes & Xiaoli Etienne, 2024. "Yield growth patterns of food commodities: Insights and challenges," PLOS ONE, Public Library of Science, vol. 19(11), pages 1-21, November.
    20. Margaux Lapierre & Alexandre Sauquet & Julie Subervie, 2019. "Providing technical assistance to peer networks to reduce pesticide use in Europe: Evidence from the French Ecophyto plan," Working Papers hal-02190979, HAL.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:5:p:1394-:d:211501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.