IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i3p933-d205165.html
   My bibliography  Save this article

Study on Urban Expansion Using the Spatial and Temporal Dynamic Changes in the Impervious Surface in Nanjing

Author

Listed:
  • Yanping Qian

    (College of Landscape Architecture, Nanjing Forestry University, Nanjing 210000, China)

  • Zhen Wu

    (School of Architecture, Nanjing Tech University, Nanjing 210000, China)

Abstract

Impervious surface area is a key factor affecting urbanization and urban environmental quality. It is of great significance to analysis timely and accurately the dynamic changes of impervious surface for urban development planning. In this study, we use a comprehensive method to extract the time series data on the impervious surface area (ISA) from the multi-temporal Landsat remote sensing images with a high overall accuracy of 90%. The processes and mechanisms of urban expansion at different political administration and direction level in the Nanjing metropolitan area are investigated by using the comprehensive classification method consisting of minimum noise fraction, linear spectral mixture analysis, spectral index, and decision tree classifiers. The expansion of Nanjing is examined by using various ISA indexes and concentric regression analyses. Results indicate that the overall classification accuracy of ISA is higher than 90%. The ISA in Nanjing has dramatically increased in the past three decades from 427.36 km 2 to 1780.21 km 2 and with a high expansion rate of 0.48 from 2000 to 2005. The city sprawls from monocentric to urban core with multiple subcenters in a concentric structure, and the geometric gravity center of construction land moves southward annually. The stages of urbanization in different district levels and the dynamic changes in different direction levels are influenced by the topographic and economic factors.

Suggested Citation

  • Yanping Qian & Zhen Wu, 2019. "Study on Urban Expansion Using the Spatial and Temporal Dynamic Changes in the Impervious Surface in Nanjing," Sustainability, MDPI, vol. 11(3), pages 1-22, February.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:3:p:933-:d:205165
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/3/933/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/3/933/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dupras, Jerôme & Marull, Joan & Parcerisas, Lluís & Coll, Francesc & Gonzalez, Andrew & Girard, Marc & Tello, Enric, 2016. "The impacts of urban sprawl on ecological connectivity in the Montreal Metropolitan Region," Environmental Science & Policy, Elsevier, vol. 58(C), pages 61-73.
    2. Carmen Carrión-Flores & Elena G. Irwin, 2004. "Determinants of Residential Land-Use Conversion and Sprawl at the Rural-Urban Fringe," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(4), pages 889-904.
    3. Tian, Guangjin & Jiang, Jing & Yang, Zhifeng & Zhang, Yaoqi, 2011. "The urban growth, size distribution and spatio-temporal dynamic pattern of the Yangtze River Delta megalopolitan region, China," Ecological Modelling, Elsevier, vol. 222(3), pages 865-878.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thomas Mumuni Bilintoh & Andrews Korah & Antwi Opuni & Adeline Akansobe, 2023. "Comparing the Trajectory of Urban Impervious Surface in Two Cities: The Case of Accra and Kumasi, Ghana," Land, MDPI, vol. 12(4), pages 1-14, April.
    2. Eyasu Markos Woldesemayat & Paolo Vincenzo Genovese, 2021. "Urban Green Space Composition and Configuration in Functional Land Use Areas in Addis Ababa, Ethiopia, and Their Relationship with Urban Form," Land, MDPI, vol. 10(1), pages 1-20, January.
    3. Getu, Kenu & Bhat, H Gangadhara, 2021. "Analysis of spatio-temporal dynamics of urban sprawl and growth pattern using geospatial technologies and landscape metrics in Bahir Dar, Northwest Ethiopia," Land Use Policy, Elsevier, vol. 109(C).
    4. Asare, Prince & Atun, Funda & Pfeffer, Karin, 2023. "Nature-Based Solutions (NBS) in spatial planning for urban flood mitigation: The perspective of flood management experts in Accra," Land Use Policy, Elsevier, vol. 133(C).
    5. Zhichao Li & Helen Gurgel & Minmin Li & Nadine Dessay & Peng Gong, 2022. "Urban Land Expansion from Scratch to Urban Agglomeration in the Federal District of Brazil in the Past 60 Years," IJERPH, MDPI, vol. 19(3), pages 1-19, January.
    6. Zhanzhong Tang & Zengxiang Zhang & Lijun Zuo & Xiao Wang & Xiaoli Zhao & Fang Liu & Shunguang Hu & Ling Yi & Jinyong Xu, 2021. "Spatial Evolution of Urban Expansion in the Beijing–Tianjin–Hebei Coordinated Development Region," Sustainability, MDPI, vol. 13(3), pages 1-23, February.
    7. Aude Zingraff-Hamed & Mathieu Bonnefond & Sebastien Bonthoux & Nicolas Legay & Sabine Greulich & Amélie Robert & Vincent Rotgé & José Serrano & Yixin Cao & Raita Bala & Alvin Vazha & Rebecca E. Tharme, 2021. "Human–River Encounter Sites: Looking for Harmony between Humans and Nature in Cities," Sustainability, MDPI, vol. 13(5), pages 1-20, March.
    8. Xiaodong Huang & Wenkai Liu & Yuping Han & Chunying Wang & Han Wang & Sai Hu, 2019. "Performance Evaluation and Comparison of Modified Spectral Mixture Analysis Method for Different Images of Landsat Series Satellites," Sustainability, MDPI, vol. 11(22), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cho, Seong-Hoon & Kim, Heeho & Roberts, Roland K. & Kim, Taeyoung & Lee, Daegoon, 2014. "Effects of changes in forestland ownership on deforestation and urbanization and the resulting effects on greenhouse gas emissions," Journal of Forest Economics, Elsevier, vol. 20(1), pages 93-109.
    2. Changchun Feng & Hao Zhang & Liang Xiao & Yongpei Guo, 2022. "Land Use Change and Its Driving Factors in the Rural–Urban Fringe of Beijing: A Production–Living–Ecological Perspective," Land, MDPI, vol. 11(2), pages 1-18, February.
    3. Carrión-Flores, Carmen E. & Flores-Lagunes, Alfonso & Guci, Ledia, 2018. "An estimator for discrete-choice models with spatial lag dependence using large samples, with an application to land-use conversions," Regional Science and Urban Economics, Elsevier, vol. 69(C), pages 77-93.
    4. Barry Kew & Brian D. Lee, 2013. "Measuring Sprawl across the Urban Rural Continuum Using an Amalgamated Sprawl Index," Sustainability, MDPI, vol. 5(5), pages 1-23, April.
    5. Maggie MacKinnon & Maibritt Pedersen Zari & Daniel K. Brown, 2023. "Improving Urban Habitat Connectivity for Native Birds: Using Least-Cost Path Analyses to Design Urban Green Infrastructure Networks," Land, MDPI, vol. 12(7), pages 1-21, July.
    6. Weizhong Su & Gaobin Ye, 2014. "Differences of Soil Fertility in Farmland Occupation and Supplement Areas in the Taihu Lake Watershed during 1985–2010," IJERPH, MDPI, vol. 11(6), pages 1-15, May.
    7. Suzanne Vallance, 2014. "Living on the Edge: Lessons from the Peri-urban Village," International Journal of Urban and Regional Research, Wiley Blackwell, vol. 38(6), pages 1954-1969, November.
    8. Li, Sheng & Nadolnyak, Denis & Hartarska, Valentina, 2019. "Agricultural land conversion: Impacts of economic and natural risk factors in a coastal area," Land Use Policy, Elsevier, vol. 80(C), pages 380-390.
    9. Maples, Chellie H. & Hagerman, Amy D. & Lambert, Dayton M., 2022. "Ex-ante effects of the 2018 Agricultural Improvement Act’s grassland initiative," Land Use Policy, Elsevier, vol. 116(C).
    10. Martinetti, Davide & Geniaux, Ghislain, 2017. "Approximate likelihood estimation of spatial probit models," Regional Science and Urban Economics, Elsevier, vol. 64(C), pages 30-45.
    11. Lynch, Lori & Geoghegan, Jacqueline, 2011. "FOREWORD: The Economics of Land Use Change: Advancing the Frontiers," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 40(3), pages 1-6, December.
    12. Wang, Feng & Wei, Xianjin & Liu, Juan & He, Lingyun & Gao, Mengnan, 2019. "Impact of high-speed rail on population mobility and urbanisation: A case study on Yangtze River Delta urban agglomeration, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 99-114.
    13. Raja Chakir & Olivier Parent, 2009. "Determinants of land use changes: A spatial multinomial probit approach," Papers in Regional Science, Wiley Blackwell, vol. 88(2), pages 327-344, June.
    14. Elena G. Irwin, 2010. "New Directions For Urban Economic Models Of Land Use Change: Incorporating Spatial Dynamics And Heterogeneity," Journal of Regional Science, Wiley Blackwell, vol. 50(1), pages 65-91, February.
    15. Marcelo Caffera & Felipe Vásquez & Daniel Rodríguez & Leonidas Carrasco-Letelier & José Ignacio Hernández & Mariela Buonomo, 2019. "Spatial Spillovers in the Implicit Market Price of Soil Erosion: An Estimation using a Spatio-temporal Hedonic Model," Documentos de Trabajo/Working Papers 1909, Facultad de Ciencias Empresariales y Economia. Universidad de Montevideo..
    16. Heather M. Stephens & Mark D. Partridge, 2015. "Lake Amenities, Environmental Degradation, and Great Lakes Regional Growth," International Regional Science Review, , vol. 38(1), pages 61-91, January.
    17. Siyu Miao & Yang Xiao & Ling Tang, 2022. "Urban Growth Simulation Based on a Multi-Dimension Classification of Growth Types: Implications for China’s Territory Spatial Planning," Land, MDPI, vol. 11(12), pages 1-14, December.
    18. Lu Yu & Dinglong Xie & Xiang Xu, 2022. "Environmental Suitability Evaluation for Human Settlements of Rural Residential Areas in Hengshui, Hebei Province," Land, MDPI, vol. 11(12), pages 1-19, November.
    19. Chao Xu & Dagmar Haase & Meirong Su & Yutao Wang & Stephan Pauleit, 2020. "Assessment of landscape changes under different urban dynamics based on a multiple-scenario modeling approach," Environment and Planning B, , vol. 47(8), pages 1361-1379, October.
    20. Kovacs, Kent F., 2009. "The Timing of Rapid Farmland Conversion Events: Evidence from California's Differential Assessment Program," 2009 Annual Meeting, July 26-28, 2009, Milwaukee, Wisconsin 49252, Agricultural and Applied Economics Association.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:3:p:933-:d:205165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.