IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i2p311-d196231.html
   My bibliography  Save this article

The Impact of Archetype Patterns in Office Buildings on the Annual Cooling, Heating and Lighting Loads in Hot-Humid, Hot-Dry and Cold Climates of Iran

Author

Listed:
  • Jalil Shaeri

    (Faculty of Arts and Architecture, Shiraz University, Shiraz 718773-35, Iran)

  • Mahmood Yaghoubi

    (School of Mechanical Engineering, Shiraz University, Shiraz 7196481334, Iran)

  • Amin Habibi

    (Faculty of Arts and Architecture, Shiraz University, Shiraz 718773-35, Iran)

  • Ata Chokhachian

    (Chair of Building Technology and Climate Responsive Design, Technical University of Munich, Munich 80333, Germany)

Abstract

Extensive cost in the building industry comes from cooling and heating to create thermal comfort. Hence, it is necessary to utilize passive solutions, in addition to suitable design, in order to reduce energy consumption. This research attempts to investigate the impact of archetype patterns in office buildings on annual energy consumption for cooling, heating and daylight loads. For this purpose, the DesignBuilder software was used to compare the forms. In this study, four conventional construction forms were considered, including the single and dense form, central courtyard buildings, U form and linear form, and each was considered with two, four and six-stories. Forms were simulated in the three cities of Bushehr, Shiraz and Tabriz, with hot-humid, hot-dry and cold climates, respectively. The results revealed that the office building with a linear form in Bushehr had the lowest energy consumption in the two and four-story forms, and also in the six-story form, the central courtyard form had the lowest energy consumption. Additionally, the central courtyard forms in Tabriz and Shiraz had the lowest energy consumption in all cases. Finally, the linear form possessed the most natural daylight through all of the studied cases for the three cities in terms of natural light gain.

Suggested Citation

  • Jalil Shaeri & Mahmood Yaghoubi & Amin Habibi & Ata Chokhachian, 2019. "The Impact of Archetype Patterns in Office Buildings on the Annual Cooling, Heating and Lighting Loads in Hot-Humid, Hot-Dry and Cold Climates of Iran," Sustainability, MDPI, vol. 11(2), pages 1-15, January.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:2:p:311-:d:196231
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/2/311/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/2/311/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sanaieian, Haniyeh & Tenpierik, Martin & Linden, Kees van den & Mehdizadeh Seraj, Fatemeh & Mofidi Shemrani, Seyed Majid, 2014. "Review of the impact of urban block form on thermal performance, solar access and ventilation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 551-560.
    2. Alhamwi, Alaa & Medjroubi, Wided & Vogt, Thomas & Agert, Carsten, 2017. "GIS-based urban energy systems models and tools: Introducing a model for the optimisation of flexibilisation technologies in urban areas," Applied Energy, Elsevier, vol. 191(C), pages 1-9.
    3. Zhang, Yan & Li, Yanxian & Zheng, Hongmei, 2017. "Ecological network analysis of energy metabolism in the Beijing-Tianjin-Hebei (Jing-Jin-Ji) urban agglomeration," Ecological Modelling, Elsevier, vol. 351(C), pages 51-62.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joseph Cabeza-Lainez & Jose-Manuel Almodovar-Melendo & Ismael Dominguez, 2019. "Daylight and Architectural Simulation of the Egebjerg School (Denmark): Sustainable Features of a New Type of Skylight," Sustainability, MDPI, vol. 11(21), pages 1-14, October.
    2. Shaoxiong Li & Le Liu & Changhai Peng, 2020. "A Review of Performance-Oriented Architectural Design and Optimization in the Context of Sustainability: Dividends and Challenges," Sustainability, MDPI, vol. 12(4), pages 1-36, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Waibel, Christoph & Evins, Ralph & Carmeliet, Jan, 2019. "Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials," Applied Energy, Elsevier, vol. 242(C), pages 1661-1682.
    2. Vassiliades, C. & Savvides, A. & Buonomano, A., 2022. "Building integration of active solar energy systems for façades renovation in the urban fabric: Effects on the thermal comfort in outdoor public spaces in Naples and Thessaloniki," Renewable Energy, Elsevier, vol. 190(C), pages 30-47.
    3. Zhang, Ji & Xu, Le & Shabunko, Veronika & Tay, Stephen En Rong & Sun, Huixuan & Lau, Stephen Siu Yu & Reindl, Thomas, 2019. "Impact of urban block typology on building solar potential and energy use efficiency in tropical high-density city," Applied Energy, Elsevier, vol. 240(C), pages 513-533.
    4. Nutkiewicz, Alex & Yang, Zheng & Jain, Rishee K., 2018. "Data-driven Urban Energy Simulation (DUE-S): A framework for integrating engineering simulation and machine learning methods in a multi-scale urban energy modeling workflow," Applied Energy, Elsevier, vol. 225(C), pages 1176-1189.
    5. Michiel Fremouw & Annamaria Bagaini & Paolo De Pascali, 2020. "Energy Potential Mapping: Open Data in Support of Urban Transition Planning," Energies, MDPI, vol. 13(5), pages 1-15, March.
    6. Luigi Bottecchia & Pietro Lubello & Pietro Zambelli & Carlo Carcasci & Lukas Kranzl, 2021. "The Potential of Simulating Energy Systems: The Multi Energy Systems Simulator Model," Energies, MDPI, vol. 14(18), pages 1-27, September.
    7. Alhamwi, Alaa & Medjroubi, Wided & Vogt, Thomas & Agert, Carsten, 2018. "Modelling urban energy requirements using open source data and models," Applied Energy, Elsevier, vol. 231(C), pages 1100-1108.
    8. Guglielmina Mutani & Valeria Todeschi & Simone Beltramino, 2020. "Energy Consumption Models at Urban Scale to Measure Energy Resilience," Sustainability, MDPI, vol. 12(14), pages 1-31, July.
    9. Nikolas Schöne & Boris Heinz, 2023. "Semi-Systematic Literature Review on the Contribution of Hydrogen to Universal Access to Energy in the Rationale of Sustainable Development Goal Target 7.1," Energies, MDPI, vol. 16(4), pages 1-42, February.
    10. Jolando M. Kisse & Martin Braun & Simon Letzgus & Tanja M. Kneiske, 2020. "A GIS-Based Planning Approach for Urban Power and Natural Gas Distribution Grids with Different Heat Pump Scenarios," Energies, MDPI, vol. 13(16), pages 1-31, August.
    11. Mastrucci, Alessio & Marvuglia, Antonino & Benetto, Enrico & Leopold, Ulrich, 2020. "A spatio-temporal life cycle assessment framework for building renovation scenarios at the urban scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    12. Guglielmina Mutani & Valeria Todeschi, 2021. "Optimization of Costs and Self-Sufficiency for Roof Integrated Photovoltaic Technologies on Residential Buildings," Energies, MDPI, vol. 14(13), pages 1-25, July.
    13. Alhamwi, Alaa & Medjroubi, Wided & Vogt, Thomas & Agert, Carsten, 2019. "Development of a GIS-based platform for the allocation and optimisation of distributed storage in urban energy systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    14. Michele Pezzagno & Anna Richiedei & Maurizio Tira, 2020. "Spatial Planning Policy for Sustainability: Analysis Connecting Land Use and GHG Emission in Rural Areas," Sustainability, MDPI, vol. 12(3), pages 1-15, January.
    15. Prades-Gil, C. & Viana-Fons, J.D. & Masip, X. & Cazorla-Marín, A. & Gómez-Navarro, T., 2023. "An agile heating and cooling energy demand model for residential buildings. Case study in a mediterranean city residential sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    16. Liu, Xiuli & Guo, Pibin & Yue, Xiaohang & Qi, Xiaoyan & Guo, Shufeng & Zhou, Xijun, 2021. "Measuring metabolic efficiency of the Beijing–Tianjin–Hebei urban agglomeration: A slacks-based measures method," Resources Policy, Elsevier, vol. 70(C).
    17. Savvides, Andreas & Vassiliades, Constantinos & Michael, Aimilios & Kalogirou, Soteris, 2019. "Siting and building-massing considerations for the urban integration of active solar energy systems," Renewable Energy, Elsevier, vol. 135(C), pages 963-974.
    18. Megan Belongeay & Gabriela Shirkey & Marina Monteiro Lunardi & Gonzalo Rodriguez-Garcia & Parikhit Sinha & Richard Corkish & Rodney A. Stewart & Annick Anctil & Jiquan Chen & Ilke Celik, 2023. "Photovoltaic Systems through the Lens of Material-Energy-Water Nexus," Energies, MDPI, vol. 16(7), pages 1-12, March.
    19. Rafiee, A. & Dias, E. & Koomen, E., 2019. "Analysing the impact of spatial context on the heat consumption of individual households," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 461-470.
    20. Milena Vukmirovic & Suzana Gavrilovic & Dalibor Stojanovic, 2019. "The Improvement of the Comfort of Public Spaces as a Local Initiative in Coping with Climate Change," Sustainability, MDPI, vol. 11(23), pages 1-20, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:2:p:311-:d:196231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.