IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i24p7238-d298780.html
   My bibliography  Save this article

Predicting At-Risk Students Using Clickstream Data in the Virtual Learning Environment

Author

Listed:
  • Naif Radi Aljohani

    (Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Ayman Fayoumi

    (Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Saeed-Ul Hassan

    (Department of Computer Science, Information Technology University, Lahore 54600, Pakistan)

Abstract

In higher education, predicting the academic performance of students is associated with formulating optimal educational policies that vehemently impact economic and financial development. In online educational platforms, the captured clickstream information of students can be exploited in ascertaining their performance. In the current study, the time-series sequential classification problem of students’ performance prediction is explored by deploying a deep long short-term memory (LSTM) model using the freely accessible Open University Learning Analytics dataset. In the pass/fail classification job, the deployed LSTM model outperformed the state-of-the-art approaches with 93.46% precision and 75.79% recall. Encouragingly, our model superseded the baseline logistic regression and artificial neural networks by 18.48% and 12.31%, respectively, with 95.23% learning accuracy. We demonstrated that the clickstream data generated due to the students’ interaction with the online learning platforms can be evaluated at a week-wise granularity to improve the early prediction of at-risk students. Interestingly, our model can predict pass/fail class with around 90% accuracy within the first 10 weeks of student interaction in a virtual learning environment (VLE). A contribution of our research is an informed approach to advanced higher education decision-making towards sustainable education. It is a bold effort for student-centric policies, promoting the trust and the loyalty of students in courses and programs.

Suggested Citation

  • Naif Radi Aljohani & Ayman Fayoumi & Saeed-Ul Hassan, 2019. "Predicting At-Risk Students Using Clickstream Data in the Virtual Learning Environment," Sustainability, MDPI, vol. 11(24), pages 1-12, December.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:24:p:7238-:d:298780
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/24/7238/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/24/7238/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John C. Yi & Christina D. Kang-Yi & Flavia Burton & H. David Chen, 2018. "Predictive Analytics Approach to Improve and Sustain College Students’ Non-Cognitive Skills and Their Educational Outcome," Sustainability, MDPI, vol. 10(11), pages 1-14, November.
    2. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huan Xu & Min Kim, 2024. "Combination prediction method of students’ performance based on ant colony algorithm," PLOS ONE, Public Library of Science, vol. 19(3), pages 1-18, March.
    2. Marian Stan & Mihai Ciobotea & Mihaela Covrig & Doina Liliana Badea, 2024. "Data Analysis in Online Education: Tools and Techniques for Improving Academic Performance," Economics and Applied Informatics, "Dunarea de Jos" University of Galati, Faculty of Economics and Business Administration, issue 3, pages 433-443.
    3. Chih-Chang Yu & Yufeng (Leon) Wu, 2021. "Early Warning System for Online STEM Learning—A Slimmer Approach Using Recurrent Neural Networks," Sustainability, MDPI, vol. 13(22), pages 1-17, November.
    4. María Consuelo Sáiz Manzanares & Juan José Rodríguez Diez & Raúl Marticorena Sánchez & María José Zaparaín Yáñez & Rebeca Cerezo Menéndez, 2020. "Lifelong Learning from Sustainable Education: An Analysis with Eye Tracking and Data Mining Techniques," Sustainability, MDPI, vol. 12(5), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghiassi, M. & Saidane, H. & Zimbra, D.K., 2005. "A dynamic artificial neural network model for forecasting time series events," International Journal of Forecasting, Elsevier, vol. 21(2), pages 341-362.
    2. Barrow, Devon K., 2016. "Forecasting intraday call arrivals using the seasonal moving average method," Journal of Business Research, Elsevier, vol. 69(12), pages 6088-6096.
    3. Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2017. "Application of artificial neural network for predicting performance of solid desiccant cooling systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 352-366.
    4. Nataša Glišović & Miloš Milenković & Nebojša Bojović & Libor Švadlenka & Zoran Avramović, 2016. "A hybrid model for forecasting the volume of passenger flows on Serbian railways," Operational Research, Springer, vol. 16(2), pages 271-285, July.
    5. Christian Fieberg & Daniel Metko & Thorsten Poddig & Thomas Loy, 2023. "Machine learning techniques for cross-sectional equity returns’ prediction," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 289-323, March.
    6. Szafranek, Karol, 2019. "Bagged neural networks for forecasting Polish (low) inflation," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.
    7. Sangseop Lim & Chang-hee Lee & Won-Ju Lee & Junghwan Choi & Dongho Jung & Younghun Jeon, 2022. "Valuation of the Extension Option in Time Charter Contracts in the LNG Market," Energies, MDPI, vol. 15(18), pages 1-14, September.
    8. Bontempi, Gianluca & Ben Taieb, Souhaib, 2011. "Conditionally dependent strategies for multiple-step-ahead prediction in local learning," International Journal of Forecasting, Elsevier, vol. 27(3), pages 689-699, July.
    9. Huber, Jakob & Stuckenschmidt, Heiner, 2020. "Daily retail demand forecasting using machine learning with emphasis on calendric special days," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1420-1438.
    10. Carlo Fezzi & Luca Mosetti, 2018. "Size matters: Estimation sample length and electricity price forecasting accuracy," DEM Working Papers 2018/10, Department of Economics and Management.
    11. Van Belle, Jente & Guns, Tias & Verbeke, Wouter, 2021. "Using shared sell-through data to forecast wholesaler demand in multi-echelon supply chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 466-479.
    12. Roman Matkovskyy & Taoufik Bouraoui, 2019. "Application of Neural Networks to Short Time Series Composite Indexes: Evidence from the Nonlinear Autoregressive with Exogenous Inputs (NARX) Model," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(2), pages 433-446, June.
    13. Ye, Yuan & Lu, Yonggang & Robinson, Powell & Narayanan, Arunachalam, 2022. "An empirical Bayes approach to incorporating demand intermittency and irregularity into inventory control," European Journal of Operational Research, Elsevier, vol. 303(1), pages 255-272.
    14. CIOBANU Dumitru & BAR Mary Violeta, 2013. "On The Prediction Of Exchange Rate Dollar/Euro With An Svm Model," Revista Economica, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 65(2), pages 91-109.
    15. Chenghao Zhong & Wengao Lou & Yongzeng Lai, 2023. "A Projection Pursuit Dynamic Cluster Model for Tourism Safety Early Warning and Its Implications for Sustainable Tourism," Mathematics, MDPI, vol. 11(24), pages 1-17, December.
    16. Nastac, Iulian & Dobrescu, Emilian & Pelinescu, Elena, 2007. "Neuro-Adaptive Model for Financial Forecasting," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 4(3), pages 19-41, September.
    17. Joo, Rocío & Bertrand, Sophie & Chaigneau, Alexis & Ñiquen, Miguel, 2011. "Optimization of an artificial neural network for identifying fishing set positions from VMS data: An example from the Peruvian anchovy purse seine fishery," Ecological Modelling, Elsevier, vol. 222(4), pages 1048-1059.
    18. Gaspar, José F. & Calvário, Miguel & Kamarlouei, Mojtaba & Guedes Soares, C., 2016. "Power take-off concept for wave energy converters based on oil-hydraulic transformer units," Renewable Energy, Elsevier, vol. 86(C), pages 1232-1246.
    19. Alejandro Parot & Kevin Michell & Werner D. Kristjanpoller, 2019. "Using Artificial Neural Networks to forecast Exchange Rate, including VAR‐VECM residual analysis and prediction linear combination," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 26(1), pages 3-15, January.
    20. Yaren Aydın & Celal Cakiroglu & Gebrail Bekdaş & Ümit Işıkdağ & Sanghun Kim & Junhee Hong & Zong Woo Geem, 2023. "Neural Network Predictive Models for Alkali-Activated Concrete Carbon Emission Using Metaheuristic Optimization Algorithms," Sustainability, MDPI, vol. 16(1), pages 1-19, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:24:p:7238-:d:298780. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.