IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i24p7202-d298425.html
   My bibliography  Save this article

Study of the Sustainability of Electrical Power Systems: Analysis of the Causes that Generate Reactive Power

Author

Listed:
  • M. A. Graña-López

    (Department of Industrial Engineer, Escuela Universitaria Politécnica, University of A Coruña, 15405 Ferrol, Spain)

  • A. García-Diez

    (Department of Naval and Industrial Engineer, Escuela Politécnica Superior, University of A Coruña, 15403 Ferrol, Spain)

  • A. Filgueira-Vizoso

    (Department of Chemistry, Escuela Politécnica Superior, University of A Coruña, 15403 Ferrol, Spain)

  • J. Chouza-Gestoso

    (Department of Industrial Engineer, Escuela Universitaria Politécnica, University of A Coruña, 15405 Ferrol, Spain)

  • A. Masdías-Bonome

    (Department of Industrial Engineer, Escuela Universitaria Politécnica, University of A Coruña, 15405 Ferrol, Spain)

Abstract

Reactive power is an important parameter in electrical power systems since it affects the efficiency of the system because it is not useful energy. It decreases the power factor of the system and limits the ability of generators to deliver useful power. It is therefore necessary to understand and correctly measure the phenomenon of reactive energy in three-phase systems. In this paper, we analyze reactive power in linear and unbalanced three-phase systems using the Unified Theory of Electrical Power and the Institute of Electrical and Electronics Engineers Standard 1459-2010 (IEEE Std. 1459-2010) to obtain expressions for reactive power in balanced and unbalanced systems and noting that there are terms that exist only for unbalanced systems. Analysis of the measurements carried out led us to identify the existence of two components of reactive power—that due to reactive elements, and that caused by unbalances in the system. Knowing the causes that generate reactive power, it is possible to act more effectively on the problem and therefore achieve a more sustainable generation of electric power and a lower environmental impact.

Suggested Citation

  • M. A. Graña-López & A. García-Diez & A. Filgueira-Vizoso & J. Chouza-Gestoso & A. Masdías-Bonome, 2019. "Study of the Sustainability of Electrical Power Systems: Analysis of the Causes that Generate Reactive Power," Sustainability, MDPI, vol. 11(24), pages 1-13, December.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:24:p:7202-:d:298425
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/24/7202/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/24/7202/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gui, Yonghao & Wei, Baoze & Li, Mingshen & Guerrero, Josep M. & Vasquez, Juan C., 2018. "Passivity-based coordinated control for islanded AC microgrid," Applied Energy, Elsevier, vol. 229(C), pages 551-561.
    2. Pathak, A.K. & Sharma, M.P & Bundele, Mahesh, 2015. "A critical review of voltage and reactive power management of wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 460-471.
    3. Gayatri, M.T.L. & Parimi, Alivelu.M. & Pavan Kumar, A.V., 2018. "A review of reactive power compensation techniques in microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1030-1036.
    4. Gandhi, Oktoviano & Rodríguez-Gallegos, Carlos D. & Zhang, Wenjie & Srinivasan, Dipti & Reindl, Thomas, 2018. "Economic and technical analysis of reactive power provision from distributed energy resources in microgrids," Applied Energy, Elsevier, vol. 210(C), pages 827-841.
    5. Samet, Haidar, 2016. "Evaluation of digital metering methods used in protection and reactive power compensation of micro-grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 260-279.
    6. Jinchao Li & Xian Geng & Jinying Li, 2016. "A Comparison of Electricity Generation System Sustainability among G20 Countries," Sustainability, MDPI, vol. 8(12), pages 1-11, December.
    7. Xu, Xu & Li, Jiayong & Xu, Zhao & Zhao, Jian & Lai, Chun Sing, 2019. "Enhancing photovoltaic hosting capacity—A stochastic approach to optimal planning of static var compensator devices in distribution networks," Applied Energy, Elsevier, vol. 238(C), pages 952-962.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jackson Hannagan & Rhys Woszczeiko & Thomas Langstaff & Weixiang Shen & John Rodwell, 2022. "The Impact of Household Appliances and Devices: Consider Their Reactive Power and Power Factors," Sustainability, MDPI, vol. 15(1), pages 1-11, December.
    2. Nicholas D. de Andrade & Ruben B. Godoy & Edson A. Batista & Moacyr A. G. de Brito & Rafael L. R. Soares, 2022. "Embedded FPGA Controllers for Current Compensation Based on Modern Power Theories," Energies, MDPI, vol. 15(17), pages 1-17, August.
    3. Ciprian Mihai Coman & Adriana Florescu & Constantin Daniel Oancea, 2020. "Improving the Efficiency and Sustainability of Power Systems Using Distributed Power Factor Correction Methods," Sustainability, MDPI, vol. 12(8), pages 1-20, April.
    4. Xiaohua Song & Caiping Zhao & Jingjing Han & Qi Zhang & Jinpeng Liu & Yuanying Chi, 2020. "Measurement and Influencing Factors Research of the Energy and Power Efficiency in China: Based on the Supply-Side Structural Reform Perspective," Sustainability, MDPI, vol. 12(9), pages 1-23, May.
    5. Krzysztof Dziarski & Arkadiusz Hulewicz & Grzegorz Dombek, 2021. "Thermographic Measurement of the Temperature of Reactive Power Compensation Capacitors," Energies, MDPI, vol. 14(18), pages 1-16, September.
    6. Arkadiusz Hulewicz & Krzysztof Dziarski & Łukasz Drużyński & Grzegorz Dombek, 2023. "Thermogram Based Indirect Thermographic Temperature Measurement of Reactive Power Compensation Capacitors," Energies, MDPI, vol. 16(5), pages 1-18, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anaya, K. & Pollitt, M., 2018. "Reactive Power Procurement: Lessons from Three Leading Countries," Cambridge Working Papers in Economics 1854, Faculty of Economics, University of Cambridge.
    2. Anaya, Karim L. & Pollitt, Michael G., 2020. "Reactive power procurement: A review of current trends," Applied Energy, Elsevier, vol. 270(C).
    3. Cabrera-Tobar, Ana & Bullich-Massagué, Eduard & Aragüés-Peñalba, Mònica & Gomis-Bellmunt, Oriol, 2016. "Review of advanced grid requirements for the integration of large scale photovoltaic power plants in the transmission system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 971-987.
    4. Li, Peng & Ji, Haoran & Yu, Hao & Zhao, Jinli & Wang, Chengshan & Song, Guanyu & Wu, Jianzhong, 2019. "Combined decentralized and local voltage control strategy of soft open points in active distribution networks," Applied Energy, Elsevier, vol. 241(C), pages 613-624.
    5. Razavi, Seyed-Ehsan & Rahimi, Ehsan & Javadi, Mohammad Sadegh & Nezhad, Ali Esmaeel & Lotfi, Mohamed & Shafie-khah, Miadreza & Catalão, João P.S., 2019. "Impact of distributed generation on protection and voltage regulation of distribution systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 157-167.
    6. Chunyi Wang & Fengzhang Luo & Zheng Jiao & Xiaolei Zhang & Zhipeng Lu & Yanshuo Wang & Ren Zhao & Yang Yang, 2022. "An Enhanced Second-Order Cone Programming-Based Evaluation Method on Maximum Hosting Capacity of Solar Energy in Distribution Systems with Integrated Energy," Energies, MDPI, vol. 15(23), pages 1-19, November.
    7. Shah Rukh Abbas & Syed Ali Abbas Kazmi & Muhammad Naqvi & Adeel Javed & Salman Raza Naqvi & Kafait Ullah & Tauseef-ur-Rehman Khan & Dong Ryeol Shin, 2020. "Impact Analysis of Large-Scale Wind Farms Integration in Weak Transmission Grid from Technical Perspectives," Energies, MDPI, vol. 13(20), pages 1-32, October.
    8. Shahid Nawaz Khan & Syed Ali Abbas Kazmi & Abdullah Altamimi & Zafar A. Khan & Mohammed A. Alghassab, 2022. "Smart Distribution Mechanisms—Part I: From the Perspectives of Planning," Sustainability, MDPI, vol. 14(23), pages 1-109, December.
    9. Kalair, A. & Abas, N. & Khan, N., 2016. "Comparative study of HVAC and HVDC transmission systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1653-1675.
    10. Villacreses, Geovanna & Gaona, Gabriel & Martínez-Gómez, Javier & Jijón, Diego Juan, 2017. "Wind farms suitability location using geographical information system (GIS), based on multi-criteria decision making (MCDM) methods: The case of continental Ecuador," Renewable Energy, Elsevier, vol. 109(C), pages 275-286.
    11. Mahmud, Nasif & Zahedi, A., 2016. "Review of control strategies for voltage regulation of the smart distribution network with high penetration of renewable distributed generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 582-595.
    12. Gupta, Akhil, 2022. "Power quality evaluation of photovoltaic grid interfaced cascaded H-bridge nine-level multilevel inverter systems using D-STATCOM and UPQC," Energy, Elsevier, vol. 238(PB).
    13. Sebastian Cuadros & Yeny E. Rodríguez & Javier Contreras, 2020. "Dynamic Data Envelopment Analysis Model Involving Undesirable Outputs in the Electricity Power Generation Sector: The Case of Latin America and the Caribbean Countries," Energies, MDPI, vol. 13(24), pages 1-20, December.
    14. Singh, Pushpendra & Meena, Nand K. & Yang, Jin & Vega-Fuentes, Eduardo & Bishnoi, Shree Krishna, 2020. "Multi-criteria decision making monarch butterfly optimization for optimal distributed energy resources mix in distribution networks," Applied Energy, Elsevier, vol. 278(C).
    15. Samet, Haidar & Khorshidsavar, Morteza, 2018. "Analytic time series load flow," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3886-3899.
    16. Jerzy Andruszkiewicz & Józef Lorenc & Agnieszka Weychan, 2023. "Determination of the Optimal Level of Reactive Power Compensation That Minimizes the Costs of Losses in Distribution Networks," Energies, MDPI, vol. 17(1), pages 1-24, December.
    17. Bielecki, Sławomir & Skoczkowski, Tadeusz, 2018. "An enhanced concept of Q-power management," Energy, Elsevier, vol. 162(C), pages 335-353.
    18. Alam, Mollah Rezaul & Alam, M.J.E. & Somani, Abhishek & Melton, Ronald B. & Tushar, Wayes & Bai, Feifei & Yan, Ruifeng & Saha, Tapan K., 2021. "Evaluating the feasibility of transactive approach for voltage management using inverters of a PV plant," Applied Energy, Elsevier, vol. 291(C).
    19. Wu, Raphael & Sansavini, Giovanni, 2020. "Integrating reliability and resilience to support the transition from passive distribution grids to islanding microgrids," Applied Energy, Elsevier, vol. 272(C).
    20. Ji, Haoran & Wang, Chengshan & Li, Peng & Song, Guanyu & Yu, Hao & Wu, Jianzhong, 2019. "Quantified analysis method for operational flexibility of active distribution networks with high penetration of distributed generators," Applied Energy, Elsevier, vol. 239(C), pages 706-714.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:24:p:7202-:d:298425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.