IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i24p6900-d294139.html
   My bibliography  Save this article

Alliance Decision of Supply Chain Considering Product Greenness and Recycling Competition

Author

Listed:
  • Yong Liu

    (School of Business, Jiangnan University, Wuxi 214122, China)

  • Qian-qian Shi

    (School of Business, Jiangnan University, Wuxi 214122, China)

  • Qian Xu

    (School of Business, Jiangnan University, Wuxi 214122, China)

Abstract

In a closed-loop supply chain (CLSC), the right alliance can help manufacturers better manufacture green products and make more profits. Choosing the most suitable alliance partner is also critical for manufacturers. In regard to product greenness and recycling competition, this paper considers the CLSC comprised of a dominant manufacturer, a retailer, and a third-party recycler. Based on the Stackelberg game and equilibrium analysis, we discuss the optimal supply chain decision-making under four different models. Then, in order to ensure supply chain (SC) members’ enthusiasm to participate in the alliance, we design a profit distribution method to distribute the total profit to SC members. The results show that manufacturer’s optimal alliance decision is related to the degree of recycling competition. When less than the threshold, C alliance(the manufacturer make an alliance with the retailer and the third-party recycler at the same time) is optimal, otherwise, MR alliance(the manufacturer and the retailer make an alliance ) is more beneficial for the manufacturer.

Suggested Citation

  • Yong Liu & Qian-qian Shi & Qian Xu, 2019. "Alliance Decision of Supply Chain Considering Product Greenness and Recycling Competition," Sustainability, MDPI, vol. 11(24), pages 1-24, December.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:24:p:6900-:d:294139
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/24/6900/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/24/6900/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhu, Wenge & He, Yuanjie, 2017. "Green product design in supply chains under competition," European Journal of Operational Research, Elsevier, vol. 258(1), pages 165-180.
    2. Zheng, Xiao-Xue & Liu, Zhi & Li, Kevin W. & Huang, Jun & Chen, Ji, 2019. "Cooperative game approaches to coordinating a three-echelon closed-loop supply chain with fairness concerns," International Journal of Production Economics, Elsevier, vol. 212(C), pages 92-110.
    3. Wenbin Wang & Shuya Zhou & Meng Zhang & Hao Sun & Lingyun He, 2018. "A Closed-Loop Supply Chain with Competitive Dual Collection Channel under Asymmetric Information and Reward–Penalty Mechanism," Sustainability, MDPI, vol. 10(7), pages 1-31, June.
    4. Zu-Jun, Ma & Zhang, Nian & Dai, Ying & Hu, Shu, 2016. "Managing channel profits of different cooperative models in closed-loop supply chains," Omega, Elsevier, vol. 59(PB), pages 251-262.
    5. Eleonora Foschi & Alessandra Bonoli, 2019. "The Commitment of Packaging Industry in the Framework of the European Strategy for Plastics in a Circular Economy," Administrative Sciences, MDPI, vol. 9(1), pages 1-13, February.
    6. Wu, Kuo-Jui & Tseng, Ming-Lang & Chiu, Anthony S.F. & Lim, Ming K., 2017. "Achieving competitive advantage through supply chain agility under uncertainty: A novel multi-criteria decision-making structure," International Journal of Production Economics, Elsevier, vol. 190(C), pages 96-107.
    7. Huang, Min & Song, Min & Lee, Loo Hay & Ching, Wai Ki, 2013. "Analysis for strategy of closed-loop supply chain with dual recycling channel," International Journal of Production Economics, Elsevier, vol. 144(2), pages 510-520.
    8. R. Canan Savaskan & Shantanu Bhattacharya & Luk N. Van Wassenhove, 2004. "Closed-Loop Supply Chain Models with Product Remanufacturing," Management Science, INFORMS, vol. 50(2), pages 239-252, February.
    9. Wang, Nengmin & He, Qidong & Jiang, Bin, 2019. "Hybrid closed-loop supply chains with competition in recycling and product markets," International Journal of Production Economics, Elsevier, vol. 217(C), pages 246-258.
    10. Sheu, Jiuh-Biing & Gao, Xiao-Qin, 2014. "Alliance or no alliance—Bargaining power in competing reverse supply chains," European Journal of Operational Research, Elsevier, vol. 233(2), pages 313-325.
    11. De Giovanni, Pietro, 2018. "A joint maximization incentive in closed-loop supply chains with competing retailers: The case of spent-battery recycling," European Journal of Operational Research, Elsevier, vol. 268(1), pages 128-147.
    12. De Giovanni, Pietro & Zaccour, Georges, 2014. "A two-period game of a closed-loop supply chain," European Journal of Operational Research, Elsevier, vol. 232(1), pages 22-40.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yucai Wu & Jiguang Wang & Lu Chen, 2021. "Optimization and Decision of Supply Chain Considering Negative Spillover Effect and Service Competition," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    2. Long, Qingqi & Tao, Xiaoying & Chen, Yunting & Chen, Yingni & Xu, Le & Zhang, Shuzhu & Zhang, Jie, 2022. "Exploring combined effects of dominance structure, green sensitivity, and green preference on manufacturing closed-loop supply chains," International Journal of Production Economics, Elsevier, vol. 251(C).
    3. Dooho Lee, 2020. "Who Drives Green Innovation? A Game Theoretical Analysis of a Closed-Loop Supply Chain under Different Power Structures," IJERPH, MDPI, vol. 17(7), pages 1-26, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ehsan Shekarian & Simme Douwe Flapper, 2021. "Analyzing the Structure of Closed-Loop Supply Chains: A Game Theory Perspective," Sustainability, MDPI, vol. 13(3), pages 1-32, January.
    2. Pietro De Giovanni & Georges Zaccour, 2022. "A selective survey of game-theoretic models of closed-loop supply chains," Annals of Operations Research, Springer, vol. 314(1), pages 77-116, July.
    3. Pietro Giovanni & Georges Zaccour, 2019. "A selective survey of game-theoretic models of closed-loop supply chains," 4OR, Springer, vol. 17(1), pages 1-44, March.
    4. Jalali, Hamed & Ansaripoor, Amir H. & De Giovanni, Pietro, 2020. "Closed-loop supply chains with complementary products," International Journal of Production Economics, Elsevier, vol. 229(C).
    5. Zhang, Abraham & Wang, Jason X. & Farooque, Muhammad & Wang, Yulan & Choi, Tsan-Ming, 2021. "Multi-dimensional circular supply chain management: A comparative review of the state-of-the-art practices and research," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    6. Zongsheng Huang, 2020. "Stochastic Differential Game in the Closed-Loop Supply Chain with Fairness Concern Retailer," Sustainability, MDPI, vol. 12(8), pages 1-21, April.
    7. Lin Zhao & Zongyu Mu, 2021. "Channel Strategies for the Two-Period Closed-Loop Supply Chain with E-Commerce," Mathematics, MDPI, vol. 9(11), pages 1-33, June.
    8. Zheng, Xiao-Xue & Li, Deng-Feng & Liu, Zhi & Jia, Fu & Sheu, Jiuh-Biing, 2019. "Coordinating a closed-loop supply chain with fairness concerns through variable-weighted Shapley values," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 227-253.
    9. Fu, Lingxian & Tang, Jie & Meng, Fanyong, 2021. "A disease transmission inspired closed-loop supply chain dynamic model for product collection," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    10. Jianmin Xiao & Zongsheng Huang, 2019. "A Stochastic Differential Game in the Closed-Loop Supply Chain with Third-Party Collecting and Fairness Concerns," Sustainability, MDPI, vol. 11(8), pages 1-17, April.
    11. Jochen Gönsch & Nora Dörmann, 2021. "On the influence of collection cost on reverse channel configuration," Journal of Business Economics, Springer, vol. 91(2), pages 179-213, March.
    12. Linan Zhou & Gengui Zhou & Hangying Li & Jian Cao, 2023. "Channel Selection of Closed-Loop Supply Chain for Scrapped Agricultural Machines Remanufacturing," Sustainability, MDPI, vol. 15(6), pages 1-30, March.
    13. He, Qidong & Wang, Nengmin & Yang, Zhen & He, Zhengwen & Jiang, Bin, 2019. "Competitive collection under channel inconvenience in closed-loop supply chain," European Journal of Operational Research, Elsevier, vol. 275(1), pages 155-166.
    14. Bo Wang & Ning Wang, 2022. "Decision Models for a Dual-Recycling Channel Reverse Supply Chain with Consumer Strategic Behavior," Sustainability, MDPI, vol. 14(17), pages 1-18, August.
    15. He, Qidong & Wang, Nengmin & Browning, Tyson R. & Jiang, Bin, 2022. "Competitive collection with convenience-perceived customers," European Journal of Operational Research, Elsevier, vol. 303(1), pages 239-254.
    16. Yanting Huang & Zongjun Wang, 2017. "Dual-Recycling Channel Decision in a Closed-Loop Supply Chain with Cost Disruptions," Sustainability, MDPI, vol. 9(11), pages 1-28, November.
    17. Jackson Jinhong Mi & Zongsheng Huang & Kai Wang & Sang-Bing Tsai & Guodong Li & Jiangtao Wang, 2018. "The Presence of a Powerful Retailer on Dynamic Collecting Closed-Loop Supply Chain From a Sustainable Innovation Perspective," Sustainability, MDPI, vol. 10(7), pages 1-17, June.
    18. Jiafu Su & Chi Li & Qingjun Zeng & Jiaquan Yang & Jie Zhang, 2019. "A Green Closed-Loop Supply Chain Coordination Mechanism Based on Third-Party Recycling," Sustainability, MDPI, vol. 11(19), pages 1-14, September.
    19. Wang, Junbin & Zhang, Ting & Fan, Xiaojun, 2020. "Reverse channel design with a dominant retailer and upstream competition in emerging markets: Retailer- or manufacturer- collection?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 137(C).
    20. Maiti, T. & Giri, B.C., 2017. "Two-way product recovery in a closed-loop supply chain with variable markup under price and quality dependent demand," International Journal of Production Economics, Elsevier, vol. 183(PA), pages 259-272.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:24:p:6900-:d:294139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.