IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i22p6206-d284143.html
   My bibliography  Save this article

Decentralized Valorization of Residual Flows as an Alternative to the Traditional Urban Waste Management System: The Case of Peñalolén in Santiago de Chile

Author

Listed:
  • Jeltsje de Kraker

    (Sub-Department of Environmental Technology, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
    Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Diagonal Las Torres 2640 Peñalolén, Santiago de Chile, Chile)

  • Katarzyna Kujawa-Roeleveld

    (Sub-Department of Environmental Technology, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
    LeAF, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands)

  • Marcelo J. Villena

    (Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Diagonal Las Torres 2640 Peñalolén, Santiago de Chile, Chile)

  • Claudia Pabón-Pereira

    (Sub-Department of Environmental Technology, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
    Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Diagonal Las Torres 2640 Peñalolén, Santiago de Chile, Chile)

Abstract

Urban residual flows contain significant amounts of valuable nutrients, which, if recovered, could serve as input for the own city needs or those of its immediate surroundings. In this study, the possibilities for decentralized recovery of nutrient rich residual flows in Santiago, Chile, are studied by means of a case study considering technical and socio-economic criteria. In particular, we calculate circularity indicators for organic matter (OM), nitrogen (N), and phosphorus (P) and cost–benefits of household and community on-site technological alternatives. Kitchen waste (KW) and garden residues (GR) as well as urine were considered as system inputs whereas urban agriculture, municipality green, or peri-urban agriculture were the considered destinations for nutrients recovered. The technologies studied were anaerobic digestion, vermicomposting, and composting, while urine storage and struvite precipitation were considered for nutrient recovery from urine. Material flow analysis was used to visualize the inputs and outputs of the baseline situation (the traditional urban waste management system), and of the different household and municipality resource recovery scenarios (the decentralized valorization systems). Our findings show that decentralized valorization of KW and GR are a clear win–win policy, since they can not only produce important environmental benefits for the city in the long run, but also important cost savings considering the landfill fees and residues transportation of the current centralized waste management system.

Suggested Citation

  • Jeltsje de Kraker & Katarzyna Kujawa-Roeleveld & Marcelo J. Villena & Claudia Pabón-Pereira, 2019. "Decentralized Valorization of Residual Flows as an Alternative to the Traditional Urban Waste Management System: The Case of Peñalolén in Santiago de Chile," Sustainability, MDPI, vol. 11(22), pages 1-26, November.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:22:p:6206-:d:284143
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/22/6206/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/22/6206/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiang, Y. & Heaven, S. & Banks, C.J., 2012. "Strategies for stable anaerobic digestion of vegetable waste," Renewable Energy, Elsevier, vol. 44(C), pages 206-214.
    2. Claudia Marcela Agudelo‐Vera & Adriaan Mels & Karel Keesman & Huub Rijnaarts, 2012. "The Urban Harvest Approach as an Aid for Sustainable Urban Resource Planning," Journal of Industrial Ecology, Yale University, vol. 16(6), pages 839-850, December.
    3. Kothari, Richa & Pandey, A.K. & Kumar, S. & Tyagi, V.V. & Tyagi, S.K., 2014. "Different aspects of dry anaerobic digestion for bio-energy: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 174-195.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joris Baars & Mohammad Ali Rajaeifar & Oliver Heidrich, 2022. "Quo vadis MFA? Integrated material flow analysis to support material efficiency," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1487-1503, August.
    2. Kartik Kapoor & Nikhil Sayi Amydala & Anubhav Ambooken & Anne Scheinberg, 2023. "Measuring Circularity in Cities: A Review of the Scholarly and Grey Literature in Search of Evidence-Based, Measurable and Actionable Indicators," Sustainability, MDPI, vol. 15(19), pages 1-26, September.
    3. Marini, Michele & Caro, Dario & Thomsen, Marianne, 2023. "Investigating local policy instruments for different types of urban agriculture in four European cities: A case study analysis on the use and effectiveness of the applied policy instruments," Land Use Policy, Elsevier, vol. 131(C).
    4. Marcelo Alves de Souza & Juliana Teixeira Gonçalves & William Azalim do Valle, 2023. "In My Backyard? Discussing the NIMBY Effect, Social Acceptability, and Residents’ Involvement in Community-Based Solid Waste Management," Sustainability, MDPI, vol. 15(9), pages 1-24, April.
    5. Piotr Sulewski & Karolina Kais & Marlena Gołaś & Grzegorz Rawa & Klaudia Urbańska & Adam Wąs, 2021. "Home Bio-Waste Composting for the Circular Economy," Energies, MDPI, vol. 14(19), pages 1-25, September.
    6. Cecilia Bruni & Çağrı Akyol & Giulia Cipolletta & Anna Laura Eusebi & Donatella Caniani & Salvatore Masi & Joan Colón & Francesco Fatone, 2020. "Decentralized Community Composting: Past, Present and Future Aspects of Italy," Sustainability, MDPI, vol. 12(8), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sohail Khan & Fuzhi Lu & Muhammad Kashif & Peihong Shen, 2021. "Multiple Effects of Different Nickel Concentrations on the Stability of Anaerobic Digestion of Molasses," Sustainability, MDPI, vol. 13(9), pages 1-11, April.
    2. Capson-Tojo, G. & Moscoviz, R. & Astals, S. & Robles, Á. & Steyer, J.-P., 2020. "Unraveling the literature chaos around free ammonia inhibition in anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    3. Zhang, Jingxin & Li, Wangliang & Lee, Jonathan & Loh, Kai-Chee & Dai, Yanjun & Tong, Yen Wah, 2017. "Enhancement of biogas production in anaerobic co-digestion of food waste and waste activated sludge by biological co-pretreatment," Energy, Elsevier, vol. 137(C), pages 479-486.
    4. Ali, Ghaffar & Nitivattananon, Vilas & Abbas, Sawaid & Sabir, Muazzam, 2012. "Green waste to biogas: Renewable energy possibilities for Thailand's green markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5423-5429.
    5. Arora, Amarpreet Singh & Nawaz, Alam & Qyyum, Muhammad Abdul & Ismail, Sherif & Aslam, Muhammad & Tawfik, Ahmed & Yun, Choa Mun & Lee, Moonyong, 2021. "Energy saving anammox technology-based nitrogen removal and bioenergy recovery from wastewater: Inhibition mechanisms, state-of-the-art control strategies, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Yao, Yiqing & Sheng, Hongmei & Luo, Yang & He, Mulan & Li, Xiangkai & Zhang, Hua & He, Wenliang & An, Lizhe, 2014. "Optimization of anaerobic co-digestion of Solidago canadensis L. biomass and cattle slurry," Energy, Elsevier, vol. 78(C), pages 122-127.
    7. Zhang, Jingxin & Hu, Qiang & Qu, Yiyuan & Dai, Yanjun & He, Yiliang & Wang, Chi-Hwa & Tong, Yen Wah, 2020. "Integrating food waste sorting system with anaerobic digestion and gasification for hydrogen and methane co-production," Applied Energy, Elsevier, vol. 257(C).
    8. Li, Kun & Liu, Ronghou & Sun, Chen, 2016. "A review of methane production from agricultural residues in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 857-865.
    9. Chiu, Su-Fang & Chiu, Juei-Yu & Kuo, Wen-Chien, 2013. "Biological stoichiometric analysis of nutrition and ammonia toxicity in thermophilic anaerobic co-digestion of organic substrates under different organic loading rates," Renewable Energy, Elsevier, vol. 57(C), pages 323-329.
    10. Gulhane, Madhuri & Pandit, Prabhakar & Khardenavis, Anshuman & Singh, Dharmesh & Purohit, Hemant, 2017. "Study of microbial community plasticity for anaerobic digestion of vegetable waste in Anaerobic Baffled Reactor," Renewable Energy, Elsevier, vol. 101(C), pages 59-66.
    11. Feng, Qunjie & Lin, Yunqin, 2017. "Integrated processes of anaerobic digestion and pyrolysis for higher bioenergy recovery from lignocellulosic biomass: A brief review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1272-1287.
    12. Sun, Hui & Wang, Enzhen & Li, Xiang & Cui, Xian & Guo, Jianbin & Dong, Renjie, 2021. "Potential biomethane production from crop residues in China: Contributions to carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    13. Santiago Alzate-Arias & Álvaro Jaramillo-Duque & Fernando Villada & Bonie Restrepo-Cuestas, 2018. "Assessment of Government Incentives for Energy from Waste in Colombia," Sustainability, MDPI, vol. 10(4), pages 1-16, April.
    14. Ganzoury, Mohamed A. & Allam, Nageh K., 2015. "Impact of nanotechnology on biogas production: A mini-review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1392-1404.
    15. Guimarães de Oliveira, Maurício & Marques Mourão, José Marcos & Marques de Oliveira, Ana Katherinne & Bezerra dos Santos, André & Lopes Pereira, Erlon, 2021. "Microaerophilic treatment enhanced organic matter removal and methane production rates during swine wastewater treatment: A long-term engineering evaluation," Renewable Energy, Elsevier, vol. 180(C), pages 691-699.
    16. Teodora Stillitano & Emanuele Spada & Nathalie Iofrida & Giacomo Falcone & Anna Irene De Luca, 2021. "Sustainable Agri-Food Processes and Circular Economy Pathways in a Life Cycle Perspective: State of the Art of Applicative Research," Sustainability, MDPI, vol. 13(5), pages 1-28, February.
    17. Giordano, P. & Caputo, P. & Vancheri, A., 2014. "Fuzzy evaluation of heterogeneous quantities: Measuring urban ecological efficiency," Ecological Modelling, Elsevier, vol. 288(C), pages 112-126.
    18. Masebinu, S.O. & Akinlabi, E.T. & Muzenda, E. & Aboyade, A.O., 2019. "A review of biochar properties and their roles in mitigating challenges with anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 291-307.
    19. Li, Yue & Chen, Yinguang & Wu, Jiang, 2019. "Enhancement of methane production in anaerobic digestion process: A review," Applied Energy, Elsevier, vol. 240(C), pages 120-137.
    20. Matheri, Anthony Njuguna & Sethunya, Vuiswa Lucia & Belaid, Mohamed & Muzenda, Edison, 2018. "Analysis of the biogas productivity from dry anaerobic digestion of organic fraction of municipal solid waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2328-2334.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:22:p:6206-:d:284143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.