IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i18p4931-d265677.html
   My bibliography  Save this article

Crop Production Pushes up Greenhouse Gases Emissions in China: Evidence from Carbon Footprint Analysis Based on National Statistics Data

Author

Listed:
  • Xiaolong Wang

    (College of Agriculture, South China Agricultural University, Guangzhou 510642, China)

  • Yun Chen

    (College of Agriculture, South China Agricultural University, Guangzhou 510642, China)

  • Xiaowei Chen

    (College of Agriculture, South China Agricultural University, Guangzhou 510642, China)

  • Rongrong He

    (College of Agriculture, South China Agricultural University, Guangzhou 510642, China)

  • Yueshan Guan

    (College of Agriculture, South China Agricultural University, Guangzhou 510642, China)

  • Yawen Gu

    (College of Agriculture, South China Agricultural University, Guangzhou 510642, China)

  • Yong Chen

    (College of Agriculture, South China Agricultural University, Guangzhou 510642, China)

Abstract

The rapid growth of crop yield in China was maintained by more fossil fuel inputs in the past years, causing concern about the greenhouse gas (GHG) emissions related to crop production. Therefore, this study analyzed historical dynamics of carbon footprint (CF) of 11 major crops in China during 2000–2016 and estimated possible GHG emissions of the system in 2020 under different scenarios. Results indicated that the GHG emissions of the Chinese crop system increased by 20.07% from 2000 to 2016, in which the grain crops contributed to more than 80% of the total emissions. The GHG emissions from grain crops including maize, wheat, and rice as well as sugar crops including sugarcane and sugar beet were increased by 28.07% and 14.27% in the study period, respectively, making up the primary factor of increased GHG emissions of crop system in China. Moreover, if the cropping pattern and agricultural practices is not improved in the future, the GHG emissions from Chinese crop system are estimated to increase by 346.19 million tons in 2020. If advanced agricultural policies and practices are implemented, the GHGs emissions of crop system in China in 2020 are estimated to be 2.92–12.62% lower than that in 2016. Overall, this study illustrated that the crop system in China contributed to the growth of GHG emissions in China over the past decades. Improving utilization efficiency of fertilizers and crop structure in China are the most important ways to reduce GHG emissions from the Chinese crop system.

Suggested Citation

  • Xiaolong Wang & Yun Chen & Xiaowei Chen & Rongrong He & Yueshan Guan & Yawen Gu & Yong Chen, 2019. "Crop Production Pushes up Greenhouse Gases Emissions in China: Evidence from Carbon Footprint Analysis Based on National Statistics Data," Sustainability, MDPI, vol. 11(18), pages 1-18, September.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:18:p:4931-:d:265677
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/18/4931/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/18/4931/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ottmar Edenhofer, 2014. "Reforming emissions trading," Nature Climate Change, Nature, vol. 4(8), pages 663-664, August.
    2. Xuemei Bai & Richard J. Dawson & Diana Ürge-Vorsatz & Gian C. Delgado & Aliyu Salisu Barau & Shobhakar Dhakal & David Dodman & Lykke Leonardsen & Valérie Masson-Delmotte & Debra C. Roberts & Seth Schu, 2018. "Six research priorities for cities and climate change," Nature, Nature, vol. 555(7694), pages 23-25, March.
    3. Zhen, Wei & Qin, Quande & Wei, Yi-Ming, 2017. "Spatio-temporal patterns of energy consumption-related GHG emissions in China's crop production systems," Energy Policy, Elsevier, vol. 104(C), pages 274-284.
    4. Yantai Gan & Chang Liang & Qiang Chai & Reynald L. Lemke & Con A. Campbell & Robert P. Zentner, 2014. "Improving farming practices reduces the carbon footprint of spring wheat production," Nature Communications, Nature, vol. 5(1), pages 1-13, December.
    5. Kees Jan van Groenigen & Chris van Kessel & Bruce A. Hungate, 2013. "Increased greenhouse-gas intensity of rice production under future atmospheric conditions," Nature Climate Change, Nature, vol. 3(3), pages 288-291, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guoming Du & Wenqi Liu & Tao Pan & Haoxuan Yang & Qi Wang, 2019. "Cooling Effect of Paddy on Land Surface Temperature in Cold China Based on MODIS Data: A Case Study in Northern Sanjiang Plain," Sustainability, MDPI, vol. 11(20), pages 1-14, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Rongqin & Liu, Ying & Tian, Mengmeng & Ding, Minglei & Cao, Lianhai & Zhang, Zhanping & Chuai, Xiaowei & Xiao, Liangang & Yao, Lunguang, 2018. "Impacts of water and land resources exploitation on agricultural carbon emissions: The water-land-energy-carbon nexus," Land Use Policy, Elsevier, vol. 72(C), pages 480-492.
    2. Ymène Fouli & Margot Hurlbert & Roland Kröbel, 2021. "Greenhouse Gas Emissions From Canadian Agriculture: Estimates and Measurements," SPP Briefing Papers, The School of Public Policy, University of Calgary, vol. 14(35), November.
    3. Xiaolin Yang & Jinran Xiong & Taisheng Du & Xiaotang Ju & Yantai Gan & Sien Li & Longlong Xia & Yanjun Shen & Steven Pacenka & Tammo S. Steenhuis & Kadambot H. M. Siddique & Shaozhong Kang & Klaus But, 2024. "Diversifying crop rotation increases food production, reduces net greenhouse gas emissions and improves soil health," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Lin, Boqiang & Xu, Bin, 2018. "How to promote the growth of new energy industry at different stages?," Energy Policy, Elsevier, vol. 118(C), pages 390-403.
    5. Valerii Havrysh & Antonina Kalinichenko & Edyta Szafranek & Vasyl Hruban, 2022. "Agricultural Land: Crop Production or Photovoltaic Power Plants," Sustainability, MDPI, vol. 14(9), pages 1-23, April.
    6. Ahmed Mohamed Shehata, 2023. "Sustainable-Oriented Development for Urban Interface of Historic Centers," Sustainability, MDPI, vol. 15(3), pages 1-19, February.
    7. Michele Acuto & Benjamin Leffel, 2021. "Understanding the global ecosystem of city networks," Urban Studies, Urban Studies Journal Limited, vol. 58(9), pages 1758-1774, July.
    8. Jun Yan & Jingwei Yu & Wei Huang & Xiaoxue Pan & Yucheng Li & Shunyao Li & Yalu Tao & Kang Zhang & Xuesheng Zhang, 2023. "Initial Studies on the Effect of the Rice–Duck–Crayfish Ecological Co-Culture System on Physical, Chemical, and Microbiological Properties of Soils: A Field Case Study in Chaohu Lake Basin, Southeast ," IJERPH, MDPI, vol. 20(3), pages 1-19, January.
    9. Junyang Gao & Helin Liu & Yongwei Tang & Mei Luo, 2024. "Hybrid method of mapping urban residential carbon emissions with high-spatial resolution: A case study of Suzhou, China," Environment and Planning B, , vol. 51(1), pages 75-88, January.
    10. Cai, Bofeng & Liu, Helin & Zhang, Xiaoling & Pan, Haozhi & Zhao, Mengxue & Zheng, Tianming & Nie, Jingxin & Du, Mengbing & Dhakal, Shobhakar, 2022. "High-resolution accounting of urban emissions in China," Applied Energy, Elsevier, vol. 325(C).
    11. Feng, Meiqing & Chen, Yaning & Duan, Weili & Fang, Gonghuan & li, Zhi & Jiao, Li & Sun, Fan & Li, Yupeng & Hou, Yifeng, 2022. "Comprehensive evaluation of the water-energy-food nexus in the agricultural management of the Tarim River Basin, Northwest China," Agricultural Water Management, Elsevier, vol. 271(C).
    12. Bei He & Xiaoyun Du & Junkang Li & Dan Chen, 2023. "A Effectiveness-and Efficiency-Based Improved Approach for Measuring Ecological Well-Being Performance in China," IJERPH, MDPI, vol. 20(3), pages 1-29, January.
    13. Nisar, Shahida & Benbi, Dinesh Kumar & Toor, Amardeep Singh, 2021. "Energy budgeting and carbon footprints of three tillage systems in maize-wheat sequence of north-western Indo-Gangetic Plains," Energy, Elsevier, vol. 229(C).
    14. Xiao Zhi & Tao Yang & Xun Zhang & Yi Ren & Pin Deng & Yuliang Chen & Yuanjie Xiao, 2023. "Experimental Study on the Mechanical Properties and Permeability of Cement-Stabilized Permeable Recycle Aggregate Materials," Sustainability, MDPI, vol. 15(19), pages 1-17, September.
    15. Shirley LAMPTEY & Lingling LI & Junhong XIE, 2018. "Impact of nitrogen fertilization on soil respiration and net ecosystem production in maize," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 64(8), pages 353-360.
    16. Na Zhou & Qiaosheng Wu & Xiangping Hu, 2020. "Research on the Policy Evolution of China’s New Energy Vehicles Industry," Sustainability, MDPI, vol. 12(9), pages 1-17, May.
    17. Chen Yang & Qingming Zhan & Sihang Gao & Huimin Liu, 2019. "How Do the Multi-Temporal Centroid Trajectories of Urban Heat Island Correspond to Impervious Surface Changes: A Case Study in Wuhan, China," IJERPH, MDPI, vol. 16(20), pages 1-21, October.
    18. Yuanying Chi & Yangmei Xu & Xu Wang & Feng Jin & Jialin Li, 2021. "A Win–Win Scenario for Agricultural Green Development and Farmers’ Agricultural Income: An Empirical Analysis Based on the EKC Hypothesis," Sustainability, MDPI, vol. 13(15), pages 1-21, July.
    19. Yu-Ling Sun & Chun-Hua Zhang & Ying-Jie Lian & Jia-Min Zhao, 2022. "Exploring the Global Research Trends of Cities and Climate Change Based on a Bibliometric Analysis," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    20. Shih, Wan-Yu & Mabon, Leslie & Puppim de Oliveira, Jose A., 2020. "Assessing governance challenges of local biodiversity and ecosystem services: Barriers identified by the expert community," Land Use Policy, Elsevier, vol. 91(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:18:p:4931-:d:265677. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.