IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i18p4825-d263930.html
   My bibliography  Save this article

Research on Economic Operation Strategy of CHP Microgrid Considering Renewable Energy Sources and Integrated Energy Demand Response

Author

Listed:
  • Jun Dong

    (North China Electric Power University, Beijing 102206, China)

  • Shilin Nie

    (North China Electric Power University, Beijing 102206, China)

  • Hui Huang

    (North China Electric Power University, Beijing 102206, China)

  • Peiwen Yang

    (North China Electric Power University, Beijing 102206, China)

  • Anyuan Fu

    (North China Electric Power University, Beijing 102206, China)

  • Jin Lin

    (North China Electric Power University, Beijing 102206, China)

Abstract

Renewable energy resources (RESs) play an important role in the upgrading and transformation of the global energy structure. However, the question of how to improve the utilization efficiency of RESs and reduce greenhouse gas emissions is still a challenge. Combined heating and power (CHP) is one effective solution and has experienced rapid development. Nevertheless, with the large scale of RESs penetrating into the power system, CHP microgrid economic operation faces great challenges. This paper proposes a CHP microgrid system that contains renewable energy with considering economy, the environment, and system flexibility, and the ultimate goal is to minimize system operation cost and carbon dioxide emissions (CO 2 ) cost. Due to the volatility of renewable energy output, the fuzzy C-means (FCM) and clustering comprehensive quality (CCQ) models were first introduced to generate clustering scenarios of the renewable energy output and evaluate the clustering results. In addition, for the sake of improving the flexibility and reliability of the CHP microgrid, this paper considers the battery and integrated energy demand response (IEDR). Moreover, the strategy choices of microgrid operators under the condition of grid-connected and islanded based on environment and interest aspects are also developed, which have rarely been involved in previous studies. Finally, this stochastic optimization problem is transformed into a mixed integer linear programming (MILP), which simplifies the calculation process, and the results show that the operation mode under different conditions will have a great impact on microgrid economic and environmental benefits.

Suggested Citation

  • Jun Dong & Shilin Nie & Hui Huang & Peiwen Yang & Anyuan Fu & Jin Lin, 2019. "Research on Economic Operation Strategy of CHP Microgrid Considering Renewable Energy Sources and Integrated Energy Demand Response," Sustainability, MDPI, vol. 11(18), pages 1-22, September.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:18:p:4825-:d:263930
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/18/4825/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/18/4825/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Moghaddam, Amjad Anvari & Seifi, Alireza & Niknam, Taher & Alizadeh Pahlavani, Mohammad Reza, 2011. "Multi-objective operation management of a renewable MG (micro-grid) with back-up micro-turbine/fuel cell/battery hybrid power source," Energy, Elsevier, vol. 36(11), pages 6490-6507.
    2. Alipour, Manijeh & Zare, Kazem & Mohammadi-Ivatloo, Behnam, 2014. "Short-term scheduling of combined heat and power generation units in the presence of demand response programs," Energy, Elsevier, vol. 71(C), pages 289-301.
    3. Izadbakhsh, Maziar & Gandomkar, Majid & Rezvani, Alireza & Ahmadi, Abdollah, 2015. "Short-term resource scheduling of a renewable energy based micro grid," Renewable Energy, Elsevier, vol. 75(C), pages 598-606.
    4. Alipour, Manijeh & Zare, Kazem & Seyedi, Heresh & Jalali, Mehdi, 2019. "Real-time price-based demand response model for combined heat and power systems," Energy, Elsevier, vol. 168(C), pages 1119-1127.
    5. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Roosta, Alireza & Amiri, Babak, 2012. "A new multi-objective reserve constrained combined heat and power dynamic economic emission dispatch," Energy, Elsevier, vol. 42(1), pages 530-545.
    6. Jun Dong & Peiwen Yang & Shilin Nie, 2019. "Day-Ahead Scheduling Model of the Distributed Small Hydro-Wind-Energy Storage Power System Based on Two-Stage Stochastic Robust Optimization," Sustainability, MDPI, vol. 11(10), pages 1-27, May.
    7. Korprasertsak, Natapol & Leephakpreeda, Thananchai, 2019. "Robust short-term prediction of wind power generation under uncertainty via statistical interpretation of multiple forecasting models," Energy, Elsevier, vol. 180(C), pages 387-397.
    8. Ren, Hongbo & Wu, Qiong & Gao, Weijun & Zhou, Weisheng, 2016. "Optimal operation of a grid-connected hybrid PV/fuel cell/battery energy system for residential applications," Energy, Elsevier, vol. 113(C), pages 702-712.
    9. Wang, Haichao & Yin, Wusong & Abdollahi, Elnaz & Lahdelma, Risto & Jiao, Wenling, 2015. "Modelling and optimization of CHP based district heating system with renewable energy production and energy storage," Applied Energy, Elsevier, vol. 159(C), pages 401-421.
    10. Zhang, Yan & Meng, Fanlin & Wang, Rui & Kazemtabrizi, Behzad & Shi, Jianmai, 2019. "Uncertainty-resistant stochastic MPC approach for optimal operation of CHP microgrid," Energy, Elsevier, vol. 179(C), pages 1265-1278.
    11. Firouzmakan, Pouya & Hooshmand, Rahmat-Allah & Bornapour, Mosayeb & Khodabakhshian, Amin, 2019. "A comprehensive stochastic energy management system of micro-CHP units, renewable energy sources and storage systems in microgrids considering demand response programs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 355-368.
    12. Aghaei, Jamshid & Alizadeh, Mohammad-Iman, 2013. "Multi-objective self-scheduling of CHP (combined heat and power)-based microgrids considering demand response programs and ESSs (energy storage systems)," Energy, Elsevier, vol. 55(C), pages 1044-1054.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lumin Shi & Man-Wen Tian & As’ad Alizadeh & Ardashir Mohammadzadeh & Sayyad Nojavan, 2023. "Information Gap Decision Theory-Based Risk-Averse Scheduling of a Combined Heat and Power Hybrid Energy System," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    2. Lucio Laureti & Alessandro Massaro & Alberto Costantiello & Angelo Leogrande, 2023. "The Impact of Renewable Electricity Output on Sustainability in the Context of Circular Economy: A Global Perspective," Sustainability, MDPI, vol. 15(3), pages 1-29, January.
    3. Jia Ning & Sipeng Hao & Aidong Zeng & Bin Chen & Yi Tang, 2021. "Research on Multi-Timescale Coordinated Method for Source-Grid-Load with Uncertain Renewable Energy Considering Demand Response," Sustainability, MDPI, vol. 13(6), pages 1-18, March.
    4. Hoseinzadeh, Siamak & Astiaso Garcia, Davide & Huang, Lizhen, 2023. "Grid-connected renewable energy systems flexibility in Norway islands’ Decarbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    5. Younes Zahraoui & Ibrahim Alhamrouni & Saad Mekhilef & M. Reyasudin Basir Khan & Mehdi Seyedmahmoudian & Alex Stojcevski & Ben Horan, 2021. "Energy Management System in Microgrids: A Comprehensive Review," Sustainability, MDPI, vol. 13(19), pages 1-33, September.
    6. Younes Zahraoui & Tarmo Korõtko & Argo Rosin & Hannes Agabus, 2023. "Market Mechanisms and Trading in Microgrid Local Electricity Markets: A Comprehensive Review," Energies, MDPI, vol. 16(5), pages 1-52, February.
    7. Pavel Atănăsoae, 2020. "Technical and Economic Assessment of Micro-Cogeneration Systems for Residential Applications," Sustainability, MDPI, vol. 12(3), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sadeghian, Omid & Mohammadpour Shotorbani, Amin & Mohammadi-Ivatloo, Behnam & Sadiq, Rehan & Hewage, Kasun, 2021. "Risk-averse maintenance scheduling of generation units in combined heat and power systems with demand response," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    2. Ito, Masakazu & Takano, Akihisa & Shinji, Takao & Yagi, Takahiro & Hayashi, Yasuhiro, 2017. "Electricity adjustment for capacity market auction by a district heating and cooling system," Applied Energy, Elsevier, vol. 206(C), pages 623-633.
    3. Roy, Nibir Baran & Das, Debapriya, 2024. "Stochastic power allocation of distributed tri-generation plants and energy storage units in a zero bus microgrid with electric vehicles and demand response," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    4. Fontenot, Hannah & Dong, Bing, 2019. "Modeling and control of building-integrated microgrids for optimal energy management – A review," Applied Energy, Elsevier, vol. 254(C).
    5. Bloess, Andreas, 2020. "Modeling of combined heat and power generation in the context of increasing renewable energy penetration," Applied Energy, Elsevier, vol. 267(C).
    6. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    7. Valdes, Javier & Poque González, Axel Bastián & Masip Macia, Yunesky & Dorner, Wolfgang & Ramirez Camargo, Luis, 2020. "Unveiling the potential for combined heat and power in Chilean industry - A policy perspective," Energy Policy, Elsevier, vol. 140(C).
    8. Najafi, Arsalan & Falaghi, Hamid & Contreras, Javier & Ramezani, Maryam, 2016. "Medium-term energy hub management subject to electricity price and wind uncertainty," Applied Energy, Elsevier, vol. 168(C), pages 418-433.
    9. Izadbakhsh, Maziar & Gandomkar, Majid & Rezvani, Alireza & Ahmadi, Abdollah, 2015. "Short-term resource scheduling of a renewable energy based micro grid," Renewable Energy, Elsevier, vol. 75(C), pages 598-606.
    10. Gimelli, A. & Mottola, F. & Muccillo, M. & Proto, D. & Amoresano, A. & Andreotti, A. & Langella, G., 2019. "Optimal configuration of modular cogeneration plants integrated by a battery energy storage system providing peak shaving service," Applied Energy, Elsevier, vol. 242(C), pages 974-993.
    11. Syed Ali Abbas Kazmi & Muhammad Khuram Shahzad & Akif Zia Khan & Dong Ryeol Shin, 2017. "Smart Distribution Networks: A Review of Modern Distribution Concepts from a Planning Perspective," Energies, MDPI, vol. 10(4), pages 1-47, April.
    12. Javidsharifi, Mahshid & Niknam, Taher & Aghaei, Jamshid & Mokryani, Geev, 2018. "Multi-objective short-term scheduling of a renewable-based microgrid in the presence of tidal resources and storage devices," Applied Energy, Elsevier, vol. 216(C), pages 367-381.
    13. Deihimi, Ali & Keshavarz Zahed, Babak & Iravani, Reza, 2016. "An interactive operation management of a micro-grid with multiple distributed generations using multi-objective uniform water cycle algorithm," Energy, Elsevier, vol. 106(C), pages 482-509.
    14. McLarty, Dustin & Panossian, Nadia & Jabbari, Faryar & Traverso, Alberto, 2019. "Dynamic economic dispatch using complementary quadratic programming," Energy, Elsevier, vol. 166(C), pages 755-764.
    15. Mohammadi, Mohammad & Noorollahi, Younes & Mohammadi-ivatloo, Behnam & Yousefi, Hossein, 2017. "Energy hub: From a model to a concept – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1512-1527.
    16. Seshu Kumar, R. & Phani Raghav, L. & Koteswara Raju, D. & Singh, Arvind R., 2021. "Impact of multiple demand side management programs on the optimal operation of grid-connected microgrids," Applied Energy, Elsevier, vol. 301(C).
    17. Elnaz Davoodi & Salar Balaei-Sani & Behnam Mohammadi-Ivatloo & Mehdi Abapour, 2021. "Flexible Continuous-Time Modeling for Multi-Objective Day-Ahead Scheduling of CHP Units," Sustainability, MDPI, vol. 13(9), pages 1-18, April.
    18. Mohammad Ali Taghikhani & Behnam Zangeneh, 2022. "Optimal energy scheduling of micro-grids considering the uncertainty of solar and wind renewable resources," Journal of Scheduling, Springer, vol. 25(5), pages 567-576, October.
    19. Jalali, Mehdi & Zare, Kazem & Seyedi, Heresh, 2017. "Strategic decision-making of distribution network operator with multi-microgrids considering demand response program," Energy, Elsevier, vol. 141(C), pages 1059-1071.
    20. Mallol-Poyato, R. & Salcedo-Sanz, S. & Jiménez-Fernández, S. & Díaz-Villar, P., 2015. "Optimal discharge scheduling of energy storage systems in MicroGrids based on hyper-heuristics," Renewable Energy, Elsevier, vol. 83(C), pages 13-24.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:18:p:4825-:d:263930. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.