IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i13p3611-d244621.html
   My bibliography  Save this article

An Observatory Framework for Metropolitan Change: Understanding Urban Social–Ecological–Technical Systems in Texas and Beyond

Author

Listed:
  • R. Patrick Bixler

    (RGK Center for Philanthropy and Community Service, LBJ School of Public Affairs, The University of Texas at Austin, Austin, TX 78712, USA)

  • Katherine Lieberknecht

    (Community and Regional Planning Program, School of Architecture, The University of Texas at Austin, Austin, TX 78712, USA)

  • Fernanda Leite

    (Construction Engineering and Project Management Program, Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, TX 78712, USA)

  • Juliana Felkner

    (Sustainable Design Program, School of Architecture, The University of Texas at Austin, Austin, TX 78712, USA)

  • Michael Oden

    (Community and Regional Planning Program, School of Architecture, The University of Texas at Austin, Austin, TX 78712, USA)

  • Steven M. Richter

    (Community and Regional Planning Program, School of Architecture, The University of Texas at Austin, Austin, TX 78712, USA)

  • Samer Atshan

    (RGK Center for Philanthropy and Community Service, LBJ School of Public Affairs, The University of Texas at Austin, Austin, TX 78712, USA)

  • Alvaro Zilveti

    (Construction Engineering and Project Management Program, Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, TX 78712, USA)

  • Rachel Thomas

    (Community and Regional Planning Program, School of Architecture, The University of Texas at Austin, Austin, TX 78712, USA)

Abstract

In Texas and elsewhere, the looming realities of rapid population growth and intensifying effects of climate change mean that the things we rely on to live—water, energy, dependable infrastructure, social cohesion, and an ecosystem to support them—are exposed to unprecedented risk. Limited resources will be in ever greater demand and the environmental stress from prolonged droughts, record-breaking heat waves, and destructive floods will increase. Existing long-term trends and behaviors will not be sustainable. That is our current trajectory, but we can still change course. Significant advances in information communication technologies and big data, combined with new frameworks for thinking about urban places as social–ecological–technical systems, and an increasing movement towards transdisciplinary scholarship and practice sets the foundation and framework for a metropolitan observatory. Yet, more is required than an infrastructure for data. Making cities inclusive, safe, resilient, and sustainable will require that data become actionable knowledge that change policy and practice. Research and development of urban sustainability and resilience knowledge is burgeoning, yet the uptake to policy has been slow. An integrative and holistic approach is necessary to develop effective sustainability science that synthesizes different sources of knowledge, relevant disciplines, multi-sectoral alliances, and connections to policy-makers and the public. To address these challenges and opportunities, we developed a conceptual framework for a “metropolitan observatory” to generate standardized long-term, large-scale datasets about social, ecological, and technical dimensions of metropolitan systems. We apply this conceptual model in Texas, known as the Texas Metro Observatory, to advance strategic research and decision-making at the intersection of urbanization and climate change. The Texas Metro Observatory project is part of Planet Texas 2050, a University of Texas Austin grand challenge initiative.

Suggested Citation

  • R. Patrick Bixler & Katherine Lieberknecht & Fernanda Leite & Juliana Felkner & Michael Oden & Steven M. Richter & Samer Atshan & Alvaro Zilveti & Rachel Thomas, 2019. "An Observatory Framework for Metropolitan Change: Understanding Urban Social–Ecological–Technical Systems in Texas and Beyond," Sustainability, MDPI, vol. 11(13), pages 1-17, July.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:13:p:3611-:d:244621
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/13/3611/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/13/3611/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Corey C. Phelps & Ralph Heidl & Anu Wadhwa, 2012. "Networks, knowledge, and knowledge networks: A critical review and research agenda," Post-Print hal-00715591, HAL.
    2. Kourtit, Karima & Nijkamp, Peter & Steenbruggen, John, 2017. "The significance of digital data systems for smart city policy," Socio-Economic Planning Sciences, Elsevier, vol. 58(C), pages 13-21.
    3. Daniel L. Childers & Mary L. Cadenasso & J. Morgan Grove & Victoria Marshall & Brian McGrath & Steward T. A. Pickett, 2015. "An Ecology for Cities: A Transformational Nexus of Design and Ecology to Advance Climate Change Resilience and Urban Sustainability," Sustainability, MDPI, vol. 7(4), pages 1-18, March.
    4. Johnson, Samuel C. & Papageorgiou, Dimitri J. & Mallapragada, Dharik S. & Deetjen, Thomas A. & Rhodes, Joshua D. & Webber, Michael E., 2019. "Evaluating rotational inertia as a component of grid reliability with high penetrations of variable renewable energy," Energy, Elsevier, vol. 180(C), pages 258-271.
    5. Peng, Yuzhen & Rysanek, Adam & Nagy, Zoltán & Schlüter, Arno, 2018. "Using machine learning techniques for occupancy-prediction-based cooling control in office buildings," Applied Energy, Elsevier, vol. 211(C), pages 1343-1358.
    6. Frank Biermann & Michele Betsill & Joyeeta Gupta & Norichika Kanie & Louis Lebel & Diana Liverman & Heike Schroeder & Bernd Siebenhüner & Ruben Zondervan, 2010. "Earth system governance: a research framework," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 10(4), pages 277-298, December.
    7. van der Hel, Sandra, 2016. "New science for global sustainability? The institutionalisation of knowledge co-production in Future Earth," Environmental Science & Policy, Elsevier, vol. 61(C), pages 165-175.
    8. Michele Romolini & R. Patrick Bixler & J. Morgan Grove, 2016. "A Social-Ecological Framework for Urban Stewardship Network Research to Promote Sustainable and Resilient Cities," Sustainability, MDPI, vol. 8(9), pages 1-15, September.
    9. Bonnie L. Keeler & Perrine Hamel & Timon McPhearson & Maike H. Hamann & Marie L. Donahue & Kelly A. Meza Prado & Katie K. Arkema & Gregory N. Bratman & Kate A. Brauman & Jacques C. Finlay & Anne D. Gu, 2019. "Social-ecological and technological factors moderate the value of urban nature," Nature Sustainability, Nature, vol. 2(1), pages 29-38, January.
    10. Patricia Romero-Lankao & Daniel M. Gnatz & Olga Wilhelmi & Mary Hayden, 2016. "Urban Sustainability and Resilience: From Theory to Practice," Sustainability, MDPI, vol. 8(12), pages 1-19, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zoltán Csedő & Máté Zavarkó & Balázs Vaszkun & Sára Koczkás, 2021. "Hydrogen Economy Development Opportunities by Inter-Organizational Digital Knowledge Networks," Sustainability, MDPI, vol. 13(16), pages 1-26, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juste Raimbault & Eric Denis & Denise Pumain, 2020. "Empowering Urban Governance through Urban Science: Multi-Scale Dynamics of Urban Systems Worldwide," Sustainability, MDPI, vol. 12(15), pages 1-25, July.
    2. Zinette Bergman & Manfred Max Bergman, 2022. "Toward Sustainable Communities: A Case Study of the Eastern Market in Detroit," Sustainability, MDPI, vol. 14(7), pages 1-14, April.
    3. Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Yin, Xiaohong & Xian, Huacai, 2019. "An energy-saving oriented air balancing strategy for multi-zone demand-controlled ventilation system," Energy, Elsevier, vol. 172(C), pages 1053-1065.
    4. Panagiotis Michailidis & Iakovos Michailidis & Dimitrios Vamvakas & Elias Kosmatopoulos, 2023. "Model-Free HVAC Control in Buildings: A Review," Energies, MDPI, vol. 16(20), pages 1-45, October.
    5. Frida Thomas Pacho, 2018. "Diversified Network Effects on Innovation Performance in Tanzania: Innovation Strategy in Service Firms," Journal of Entrepreneurship and Business Innovation, Macrothink Institute, Journal of Entrepreneurship and Business Innovation, vol. 5(1), pages 1-1, December.
    6. Srijana Shrestha & Khem Narayan Poudyal & Nawraj Bhattarai & Mohan B. Dangi & John J. Boland, 2022. "An Assessment of the Impact of Land Use and Land Cover Change on the Degradation of Ecosystem Service Values in Kathmandu Valley Using Remote Sensing and GIS," Sustainability, MDPI, vol. 14(23), pages 1-18, November.
    7. Hallberg-Sramek, Isabella & Nordström, Eva-Maria & Priebe, Janina & Reimerson, Elsa & Mårald, Erland & Nordin, Annika, 2023. "Combining scientific and local knowledge improves evaluating future scenarios of forest ecosystem services," Ecosystem Services, Elsevier, vol. 60(C).
    8. Li, Mingxiang, 2021. "Exploring novel technologies through board interlocks: Spillover vs. broad exploration," Research Policy, Elsevier, vol. 50(9).
    9. Antonio J. Castro & Cristina Quintas-Soriano & Jodi Brandt & Carla L. Atkinson & Colden V. Baxter & Morey Burnham & Benis N. Egoh & Marina García-Llorente & Jason P. Julian & Berta Martín-López & Feli, 2018. "Applying Place-Based Social-Ecological Research to Address Water Scarcity: Insights for Future Research," Sustainability, MDPI, vol. 10(5), pages 1-13, May.
    10. Guerra, K. & Haro, P. & Gutiérrez, R.E. & Gómez-Barea, A., 2022. "Facing the high share of variable renewable energy in the power system: Flexibility and stability requirements," Applied Energy, Elsevier, vol. 310(C).
    11. Joyeeta Gupta & Aarti Gupta & Courtney Vegelin, 2022. "Equity, justice and the SDGs: lessons learnt from two decades of INEA scholarship," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 22(2), pages 393-409, June.
    12. Pilar Jiménez-Medina & Andrés Artal-Tur & Noelia Sánchez-Casado, 2021. "Tourism Business, Place Identity, Sustainable Development, and Urban Resilience: A Focus on the Sociocultural Dimension," International Regional Science Review, , vol. 44(1), pages 170-199, January.
    13. Joyeeta Gupta & Louis Lebel, 0. "Access and allocation in earth system governance: lessons learnt in the context of the Sustainable Development Goals," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 0, pages 1-18.
    14. Heike Schroeder, 2010. "Agency in international climate negotiations: the case of indigenous peoples and avoided deforestation," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 10(4), pages 317-332, December.
    15. Zbigniew Drewniak & Rafal Drewniak & Robert Karaszewski, 2020. "The Assessment of the Features of Inter-organisational Relationships: Benefits, Duration, Repeatability and Maturity of the Relationship with the Company's Stakeholders," European Research Studies Journal, European Research Studies Journal, vol. 0(Special 1), pages 443-461.
    16. Helistö, Niina & Kiviluoma, Juha & Morales-España, Germán & O’Dwyer, Ciara, 2021. "Impact of operational details and temporal representations on investment planning in energy systems dominated by wind and solar," Applied Energy, Elsevier, vol. 290(C).
    17. Veerkamp, Clara J. & Schipper, Aafke M. & Hedlund, Katarina & Lazarova, Tanya & Nordin, Amanda & Hanson, Helena I., 2021. "A review of studies assessing ecosystem services provided by urban green and blue infrastructure," Ecosystem Services, Elsevier, vol. 52(C).
    18. Irina Tumini & Paula Villagra-Islas & Geraldine Herrmann-Lunecke, 2017. "Evaluating reconstruction effects on urban resilience: a comparison between two Chilean tsunami-prone cities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(3), pages 1363-1392, February.
    19. Adomako, Samuel & Amankwah-Amoah, Joseph & Donbesuur, Francis & Ahsan, Mujtaba & Danso, Albert & Uddin, Moshfique, 2022. "Strategic agility of SMEs in emerging economies: Antecedents, consequences and boundary conditions," International Business Review, Elsevier, vol. 31(6).
    20. Mikhail Rogov & Céline Rozenblat, 2018. "Urban Resilience Discourse Analysis: Towards a Multi-Level Approach to Cities," Sustainability, MDPI, vol. 10(12), pages 1-21, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:13:p:3611-:d:244621. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.