IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i12p3357-d240648.html
   My bibliography  Save this article

Optimal Travel Route Recommendation Mechanism Based on Neural Networks and Particle Swarm Optimization for Efficient Tourism Using Tourist Vehicular Data

Author

Listed:
  • Sehrish Malik

    (Computer Engineering Department, Jeju National University, Jeju-si 63243, Korea)

  • DoHyeun Kim

    (Computer Engineering Department, Jeju National University, Jeju-si 63243, Korea)

Abstract

With the swift growth in tourism all around the world, it has become vital to introduce advancements and improvements to the services provided to the tourists, in order to ensure their ease of travel and satisfaction. Optimal travel route identification and recommendation is one of these amenities, which requires our attention as a basic and much-needed facility to improve the experience of travelers. In this work, we propose an optimal route recommendation mechanism for the prediction of the next tourist attraction and optimal route recommendation to the predicted tourist attraction. The algorithms used in the proposed methodology are neural networks for prediction and particle swarm optimization for finding the optimal route. We design an objective function for the route optimization based on the five route parameters of distance, road congestion, weather conditions, route popularity, and user preference. The data used is the tourism data of Jeju Island from December 2016 to December 2017. The performance analysis in the prediction mechanism is performed based on the accuracy of test data results with varying route sizes, while for route optimization, the obtained results are compared with the non-optimized technique. Also, comparisons analysis is performed by comparing the performance of the applied particle swarm optimization algorithm with an identical system-level implementation of the genetic algorithm, which is one of most widely used optimization algorithms. An extended comparative analysis with some related recommendation system studies is also performed based on key optimization factors in route optimization.

Suggested Citation

  • Sehrish Malik & DoHyeun Kim, 2019. "Optimal Travel Route Recommendation Mechanism Based on Neural Networks and Particle Swarm Optimization for Efficient Tourism Using Tourist Vehicular Data," Sustainability, MDPI, vol. 11(12), pages 1-26, June.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:12:p:3357-:d:240648
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/12/3357/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/12/3357/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Naixia Mou & Caixia Liu & Lingxian Zhang & Xin Fu & Yichun Xie & Yong Li & Peng Peng, 2018. "Spatial Pattern and Regional Relevance Analysis of the Maritime Silk Road Shipping Network," Sustainability, MDPI, vol. 10(4), pages 1-13, March.
    2. Songyi Wang & Fengming Tao & Yuhe Shi & Haolin Wen, 2017. "Optimization of Vehicle Routing Problem with Time Windows for Cold Chain Logistics Based on Carbon Tax," Sustainability, MDPI, vol. 9(5), pages 1-23, April.
    3. Zheng, Weimin & Huang, Xiaoting & Li, Yuan, 2017. "Understanding the tourist mobility using GPS: Where is the next place?," Tourism Management, Elsevier, vol. 59(C), pages 267-280.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Viomesh Kumar Singh & Sangeeta Sabharwal & Goldie Gabrani, 2022. "A new fuzzy clustering-based recommendation method using grasshopper optimization algorithm and Map-Reduce," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2698-2709, October.
    2. Mengyi Lin & Fu-Yuan Li & Haibin Zhou, 2020. "A Research on the Combination of Oblique Photography and Mobile Applications Based on the Sustainable Development of Tourism," Sustainability, MDPI, vol. 12(9), pages 1-19, April.
    3. Yong Wang & Can Chen & Yuanhan Wei & Yuanfan Wei & Haizhong Wang, 2025. "Collaboration and Resource Sharing for the Multi-Depot Electric Vehicle Routing Problem with Time Windows and Dynamic Customer Demands," Sustainability, MDPI, vol. 17(6), pages 1-38, March.
    4. Bawan Mahmood & Jalil Kianfar, 2019. "Driver Behavior Models for Heavy Vehicles and Passenger Cars at a Work Zone," Sustainability, MDPI, vol. 11(21), pages 1-15, October.
    5. Domokos Esztergár-Kiss, 2020. "Trip Chaining Model with Classification and Optimization Parameters," Sustainability, MDPI, vol. 12(16), pages 1-15, August.
    6. Cristina Maria Păcurar & Ruxandra-Gabriela Albu & Victor Dan Păcurar, 2021. "Tourist Route Optimization in the Context of Covid-19 Pandemic," Sustainability, MDPI, vol. 13(10), pages 1-17, May.
    7. Wafa Shafqat & Yung-Cheol Byun, 2019. "A Recommendation Mechanism for Under-Emphasized Tourist Spots Using Topic Modeling and Sentiment Analysis," Sustainability, MDPI, vol. 12(1), pages 1-26, December.
    8. Xiaofei Huang & Vishal Jagota & Einer Espinoza-Muñoz & Judith Flores-Albornoz, 2022. "Tourist hot spots prediction model based on optimized neural network algorithm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(1), pages 63-71, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuwei Xiao & Shan Jiang & Zhenxin Zhang, 2025. "Spatio-Temporal Tourist Behavior (STTB) under digital footprints: a systematic literature review," Information Technology & Tourism, Springer, vol. 27(3), pages 517-545, September.
    2. César Ducruet, 2023. "Shipping network analysis: state-of-the-art and application to the global financial crisis," Post-Print halshs-04588340, HAL.
    3. Ling Shen & Fengming Tao & Songyi Wang, 2018. "Multi-Depot Open Vehicle Routing Problem with Time Windows Based on Carbon Trading," IJERPH, MDPI, vol. 15(9), pages 1-20, September.
    4. Wenping Liu & Chenlu Dong & Weijuan Chen, 2017. "Mapping and Quantifying Spatial and Temporal Dynamics and Bundles of Travel Flows of Residents Visiting Urban Parks," Sustainability, MDPI, vol. 9(8), pages 1-15, July.
    5. Abdul Salam Khan & Bashir Salah & Dominik Zimon & Muhammad Ikram & Razaullah Khan & Catalin I. Pruncu, 2020. "A Sustainable Distribution Design for Multi-Quality Multiple-Cold-Chain Products: An Integrated Inspection Strategies Approach," Energies, MDPI, vol. 13(24), pages 1-25, December.
    6. Wei Hu & Yuejing Ge & Zhiding Hu & Na Li & Li Ye & Ziran Jiang & Yun Deng & Shufang Wang & Yue Shan, 2022. "Features of Geo-Economic Network between China and Countries along the 21st Century Maritime Silk Road," Sustainability, MDPI, vol. 14(18), pages 1-22, September.
    7. Yi Zhang & Guowei Hua & T. C. E. Cheng & Juliang Zhang, 2020. "Cold chain distribution: How to deal with node and arc time windows?," Annals of Operations Research, Springer, vol. 291(1), pages 1127-1151, August.
    8. Samita Kedkaew & Warisa Nakkiew & Parida Jewpanya & Wasawat Nakkiew, 2024. "A Novel Tourist Trip Design Problem with Stochastic Travel Times and Partial Charging for Battery Electric Vehicles," Mathematics, MDPI, vol. 12(18), pages 1-19, September.
    9. Kai Shen & Jan-Dirk Schmöcker & Wenzhe Sun & Ali Gul Qureshi, 2023. "Calibration of sightseeing tour choices considering multiple decision criteria with diminishing reward," Transportation, Springer, vol. 50(5), pages 1897-1921, October.
    10. José Ruiz-Meza & Julio Brito & Jairo R. Montoya-Torres, 2021. "Multi-Objective Fuzzy Tourist Trip Design Problem with Heterogeneous Preferences and Sustainable Itineraries," Sustainability, MDPI, vol. 13(17), pages 1-22, August.
    11. Hongchu Yu & Zheng Guo & Lei Xu, 2025. "Research on Port Competitiveness Dynamics in China Under the Background of Free Trade Zone and Port Integration," Sustainability, MDPI, vol. 17(12), pages 1-33, June.
    12. Jing Chen & Pengfei Gui & Tao Ding & Sanggyun Na & Yingtang Zhou, 2019. "Optimization of Transportation Routing Problem for Fresh Food by Improved Ant Colony Algorithm Based on Tabu Search," Sustainability, MDPI, vol. 11(23), pages 1-22, November.
    13. Xujing Zhang & Lichuan Wang & Yan Chen, 2019. "Carbon Emission Reduction of Apparel Material Distribution Based on Multi-Objective Genetic Algorithm (NSGA-II)," Sustainability, MDPI, vol. 11(9), pages 1-15, May.
    14. Pattama Krataithong & Chutiporn Anutariya & Marut Buranarach, 2022. "A Taxi Trajectory and Social Media Data Management Platform for Tourist Behavior Analysis," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
    15. Yu, Ling & Zhao, Pengjun & Tang, Junqing & Pang, Liang, 2023. "Changes in tourist mobility after COVID-19 outbreaks," Annals of Tourism Research, Elsevier, vol. 98(C).
    16. Yang, Wen & Ma, Jianhua & Fan, Ao & Zhang, Jinyi & Pan, Yanchun, 2024. "Effectiveness of policies for electric commercial vehicle adoption and emission reduction in the logistics industry," Energy Policy, Elsevier, vol. 188(C).
    17. Kang, Sanghoon, 2016. "Associations between space–time constraints and spatial patterns of travels," Annals of Tourism Research, Elsevier, vol. 61(C), pages 127-141.
    18. Worapot Sirirak & Rapeepan Pitakaso, 2018. "Marketplace Location Decision Making and Tourism Route Planning," Administrative Sciences, MDPI, vol. 8(4), pages 1-25, November.
    19. Zhixue Zhao & Xiamiao Li & Xiancheng Zhou, 2020. "Optimization of transportation routing problem for fresh food in time-varying road network: Considering both food safety reliability and temperature control," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-19, July.
    20. Longlong Leng & Jingling Zhang & Chunmiao Zhang & Yanwei Zhao & Wanliang Wang & Gongfa Li, 2020. "A novel bi-objective model of cold chain logistics considering location-routing decision and environmental effects," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-29, April.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:12:p:3357-:d:240648. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.