IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i8p2908-d164088.html
   My bibliography  Save this article

Carbon Footprint Analyses and Potential Carbon Emission Reduction in China’s Major Peach Orchards

Author

Listed:
  • Chaoyi Guo

    (College of Resources and Environment, Southwest University, Chongqing 400716, China)

  • Xiaozhong Wang

    (College of Resources and Environment, Southwest University, Chongqing 400716, China)

  • Yujia Li

    (College of Resources and Environment, Southwest University, Chongqing 400716, China)

  • Xinhua He

    (College of Resources and Environment, Southwest University, Chongqing 400716, China)

  • Wushuai Zhang

    (Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China)

  • Jie Wang

    (College of Resources and Environment, Southwest University, Chongqing 400716, China)

  • Xiaojun Shi

    (College of Resources and Environment, Southwest University, Chongqing 400716, China
    Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
    National Monitoring Station of Soil Fertility and Fertilizer Efficiency on Purple Soils, Southwest University, Chongqing 400716, China)

  • Xinping Chen

    (College of Resources and Environment, Southwest University, Chongqing 400716, China
    Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China)

  • Yueqiang Zhang

    (College of Resources and Environment, Southwest University, Chongqing 400716, China
    Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
    National Monitoring Station of Soil Fertility and Fertilizer Efficiency on Purple Soils, Southwest University, Chongqing 400716, China)

Abstract

An excess of material input in fruit orchards has brought serious environmental problems, particularly in China. However, studies on the estimation of greenhouse gas (GHG) emissions in peach orchards are limited. In this study, based on questionnaire surveys in major peach-producing regions, including the North China Plain ( n = 214), as well as northwest ( n = 22) and southwest ( n = 33) China, the carbon footprints (CFs) of these orchards were calculated by the life cycle assessment. The potential emission reduction in each region was estimated by combining the GHG emissions and CFs with plantation areas and fruit yields. The results showed that the average GHG emissions in the North China Plain, northwest, and southwest regions were 15,668 kg CO 2 -eq ha −1 , 10,386 kg CO 2 -eq ha −1 , and 5580 kg CO 2 -eq ha −1 , with corresponding CFs of 0.48 kg CO 2 -eq ha −1 , 0.27 kg CO 2 -eq ha −1 , and 0.20 kg CO 2 -eq kg −1 , respectively. The main contribution source of GHG emissions in these three regions was fertilizer (77–95%), followed by electricity, pesticides, and diesel. By adopting advanced farming practices with high yield and a high partial factor productivity of fertilizer, the GHG emissions could be reduced by ~13–35%, with the highest potential reduction in the North China Plain. In conclusion, the GHG emissions and their CFs were impressively high in China’s major peach-producing regions, but these GHG emissions could be substantially decreased by optimizing nutrients and irrigation management, including the rational selection of fertilizer rates and types with water-saving irrigation systems or practices (e.g., mulching) for increasing fertilizer and water use efficiency, and maintaining a sustainable peach production in China or similar countries.

Suggested Citation

  • Chaoyi Guo & Xiaozhong Wang & Yujia Li & Xinhua He & Wushuai Zhang & Jie Wang & Xiaojun Shi & Xinping Chen & Yueqiang Zhang, 2018. "Carbon Footprint Analyses and Potential Carbon Emission Reduction in China’s Major Peach Orchards," Sustainability, MDPI, vol. 10(8), pages 1-17, August.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:8:p:2908-:d:164088
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/8/2908/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/8/2908/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ranjan Bhattacharyya & Birendra Nath Ghosh & Prasanta Kumar Mishra & Biswapati Mandal & Cherukumalli Srinivasa Rao & Dibyendu Sarkar & Krishnendu Das & Kokkuvayil Sankaranarayanan Anil & Manickam Lali, 2015. "Soil Degradation in India: Challenges and Potential Solutions," Sustainability, MDPI, vol. 7(4), pages 1-43, March.
    2. Ierna, Anita & Pandino, Gaetano & Lombardo, Sara & Mauromicale, Giovanni, 2011. "Tuber yield, water and fertilizer productivity in early potato as affected by a combination of irrigation and fertilization," Agricultural Water Management, Elsevier, vol. 101(1), pages 35-41.
    3. Goossens, Y. & Annaert, B. & De Tavernier, J. & Mathijs, E. & Keulemans, W. & Geeraerd, A., 2017. "Life cycle assessment (LCA) for apple orchard production systems including low and high productive years in conventional, integrated and organic farms," Agricultural Systems, Elsevier, vol. 153(C), pages 81-93.
    4. Xi Xie & Wenjia Cai & Yongkai Jiang & Weihua Zeng, 2015. "Carbon Footprints and Embodied Carbon Flows Analysis for China’s Eight Regions: A New Perspective for Mitigation Solutions," Sustainability, MDPI, vol. 7(8), pages 1-17, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Min Yang & Quan Long & Wenli Li & Zhichao Wang & Xinhua He & Jie Wang & Xiaozhong Wang & Huaye Xiong & Chaoyi Guo & Guancheng Zhang & Bin Luo & Jun Qiu & Xinping Chen & Fusuo Zhang & Xiaojun Shi & Yue, 2020. "Mapping the Environmental Cost of a Typical Citrus-Producing County in China: Hotspot and Optimization," Sustainability, MDPI, vol. 12(5), pages 1-18, February.
    2. Persefoni Maletsika & Chris Cavalaris & Vasileios Giouvanis & George D. Nanos, 2022. "Effects of Alternative Fertilization and Irrigation Practices on the Energy Use and Carbon Footprint of Canning Peach Orchards," Sustainability, MDPI, vol. 14(14), pages 1-19, July.
    3. Min Liu & Yinrong Chen & Kun Chen & Yi Chen, 2023. "Progress and Hotspots of Research on Land-Use Carbon Emissions: A Global Perspective," Sustainability, MDPI, vol. 15(9), pages 1-23, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bin Huang & Zaijian Yuan & Mingguo Zheng & Yishan Liao & Kim Loi Nguyen & Thi Hong Nguyen & Samran Sombatpanit & Dingqiang Li, 2022. "Soil and Water Conservation Techniques in Tropical and Subtropical Asia: A Review," Sustainability, MDPI, vol. 14(9), pages 1-19, April.
    2. Lohan, Shiv Kumar & Jat, H.S. & Yadav, Arvind Kumar & Sidhu, H.S. & Jat, M.L. & Choudhary, Madhu & Peter, Jyotsna Kiran & Sharma, P.C., 2018. "Burning issues of paddy residue management in north-west states of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 693-706.
    3. Claudio Baudino & Nicole Roberta Giuggioli & Rossella Briano & Stefano Massaglia & Cristiana Peano, 2017. "Integrated Methodologies (SWOT, TOWS, LCA) for Improving Production Chains and Environmental Sustainability of Kiwifruit and Baby Kiwi in Italy," Sustainability, MDPI, vol. 9(9), pages 1-18, September.
    4. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, vol. 8(3), pages 1-41, March.
    5. Sun, Xudong & Li, Jiashuo & Qiao, Han & Zhang, Bo, 2017. "Energy implications of China's regional development: New insights from multi-regional input-output analysis," Applied Energy, Elsevier, vol. 196(C), pages 118-131.
    6. Drall, Anviksha & Mandal, Sabuj Kumar, 2021. "Investigating the existence of entry barriers in rural non-farm sector (RNFS) employment in India: A theoretical modelling and an empirical analysis," World Development, Elsevier, vol. 141(C).
    7. Saw Min & Martin Rulík, 2020. "Comparison of Carbon Dioxide (CO 2 ) Fluxes between Conventional and Conserved Irrigated Rice Paddy Fields in Myanmar," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    8. Cinny Makkar & Jaswinder Singh & Chander Parkash & Sharanpreet Singh & Adarsh Pal Vig & Salwinder Singh Dhaliwal, 2023. "Vermicompost acts as bio-modulator for plants under stress and non-stress conditions," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(3), pages 2006-2057, March.
    9. Zou, Haiyang & Fan, Junliang & Zhang, Fucang & Xiang, Youzhen & Wu, Lifeng & Yan, Shicheng, 2020. "Optimization of drip irrigation and fertilization regimes for high grain yield, crop water productivity and economic benefits of spring maize in Northwest China," Agricultural Water Management, Elsevier, vol. 230(C).
    10. Leying Wu & Zheng Wang, 2017. "Examining drivers of the emissions embodied in trade," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-14, April.
    11. Nikouei, Alireza & Asgharipour, Mohammad Reza & Marzban, Zahra, 2022. "Modeling land allocation to produce crops under economic and environmental goals in Iran: a multi-objective programming approach," Ecological Modelling, Elsevier, vol. 471(C).
    12. Li, Xinxin & Liu, Hongguang & Li, Jing & He, Xinlin & Gong, Ping & Lin, En & Li, Kaiming & Li, Ling & Binley, Andrew, 2020. "Experimental study and multi–objective optimization for drip irrigation of grapes in arid areas of northwest China," Agricultural Water Management, Elsevier, vol. 232(C).
    13. Tomasz Niedziński & Magdalena Szymańska & Jan Łabętowicz & Tomasz Sosulski, 2024. "Does the Deep Placement of Fertilizers Increase Potato Yields, Fertilization Efficiency and Reduce N 2 O Emissions from the Soil?," Agriculture, MDPI, vol. 14(3), pages 1-18, February.
    14. Suresh Kumar & Dharam Raj Singh & Alka Singh & Naveen Prakash Singh & Girish Kumar Jha, 2020. "Does Adoption of Soil and Water Conservation Practice Enhance Productivity and Reduce Risk Exposure? Empirical Evidence from Semi-Arid Tropics (SAT), India," Sustainability, MDPI, vol. 12(17), pages 1-16, August.
    15. Kammoun, Mariem & Bouallous, Ons & Ksouri, Mohamed Fakhri & Gargouri-Bouzid, Radhia & Nouri-Ellouz, Oumèma, 2018. "Agro-physiological and growth response to reduced water supply of somatic hybrid potato plants (Solanum tuberosum L.) cultivated under greenhouse conditions," Agricultural Water Management, Elsevier, vol. 203(C), pages 9-19.
    16. Yiyi Zhang & Huanzhi Fu & Xinghua He & Zhen Shi & Tao Hai & Peng Liu & Shan Xi & Kai Zhang, 2023. "Electricity-Related Water Network Analysis in China Based on Multi-Regional Input–Output Analysis and Complex Network Analysis," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    17. Gackstetter, David & von Bloh, Malte & Hannus, Veronika & Meyer, Sebastian T. & Weisser, Wolfgang & Luksch, Claudia & Asseng, Senthold, 2023. "Autonomous field management – An enabler of sustainable future in agriculture," Agricultural Systems, Elsevier, vol. 206(C).
    18. Vinod Tamburi & Amba Shetty & S. Shrihari, 2021. "Spatial variability of vertisols nutrients in the Deccan plateau region of north Karnataka, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(2), pages 2910-2923, February.
    19. Hassan Afzaal & Aitazaz A. Farooque & Farhat Abbas & Bishnu Acharya & Travis Esau, 2020. "Precision Irrigation Strategies for Sustainable Water Budgeting of Potato Crop in Prince Edward Island," Sustainability, MDPI, vol. 12(6), pages 1-16, March.
    20. Yingying Xing & Xiaoli Niu & Ning Wang & Wenting Jiang & Yaguang Gao & Xiukang Wang, 2020. "The Correlation between Soil Nutrient and Potato Quality in Loess Plateau of China Based on PLSR," Sustainability, MDPI, vol. 12(4), pages 1-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:8:p:2908-:d:164088. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.