IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i5p1827-d326396.html
   My bibliography  Save this article

Mapping the Environmental Cost of a Typical Citrus-Producing County in China: Hotspot and Optimization

Author

Listed:
  • Min Yang

    (College of Resources and Environment, Southwest University, Chongqing 400716, China)

  • Quan Long

    (College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China)

  • Wenli Li

    (College of Resources and Environment, Southwest University, Chongqing 400716, China)

  • Zhichao Wang

    (College of Resources and Environment, Southwest University, Chongqing 400716, China)

  • Xinhua He

    (College of Resources and Environment, Southwest University, Chongqing 400716, China)

  • Jie Wang

    (College of Resources and Environment, Southwest University, Chongqing 400716, China)

  • Xiaozhong Wang

    (College of Resources and Environment, Southwest University, Chongqing 400716, China)

  • Huaye Xiong

    (College of Resources and Environment, Southwest University, Chongqing 400716, China)

  • Chaoyi Guo

    (College of Resources and Environment, Southwest University, Chongqing 400716, China)

  • Guancheng Zhang

    (Yunnan Yuntianhua Co., Ltd., Kunming 650228, China)

  • Bin Luo

    (Danling County Agricultural and Rural Bureau, Meishan 620200, China)

  • Jun Qiu

    (Danling County Agricultural and Rural Bureau, Meishan 620200, China)

  • Xinping Chen

    (College of Resources and Environment, Southwest University, Chongqing 400716, China
    Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
    Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400716, China
    State Cultivation Base of Eco-agriculture for Southwest Mountainous Land, Southwest University, Chongqing 400716, China)

  • Fusuo Zhang

    (College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
    Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400716, China)

  • Xiaojun Shi

    (College of Resources and Environment, Southwest University, Chongqing 400716, China
    Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
    Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400716, China
    State Cultivation Base of Eco-agriculture for Southwest Mountainous Land, Southwest University, Chongqing 400716, China)

  • Yueqiang Zhang

    (College of Resources and Environment, Southwest University, Chongqing 400716, China
    Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
    Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400716, China
    State Cultivation Base of Eco-agriculture for Southwest Mountainous Land, Southwest University, Chongqing 400716, China)

Abstract

The environmental sustainability of the largest citrus plantation globally is facing a great challenge in China. Further, there is a lack of quantitative, regional hotspot studies. In this study, the life cycle assessment (LCA) was used to quantify the environmental cost of citrus production based on 155 farmers’ surveys from typical citrus orchards in Danling County, southwest China, which produced 0.65% of the country’s total citrus production. The results showed that the average values of environmental risk indicated by global warming potential (GWP), acidification potential (AP), and eutrophication potential (EP) were 11,665 kg CO 2 -eq ha −1 , 184 kg SO 2 -eq ha −1 , and 110 kg PO 4 -eq ha −1 , respectively. The production and utilization of fertilizer ranked the first contribution to the environmental impacts among all the environmental impacts, which contributed 92.4–95.1%, 89.4–89.8%, and 97.8–97.9% to global warming potential, acidification potential, and eutrophication potential, respectively. Specific to the contribution of fertilizers to environmental costs, the production and utilization of nitrogen (N) fertilizer accounted for more than 95% of the total environmental costs. Thus, the spatial distribution of environmental costs in this county was well matched with that of N input. Compared with the average values of investigated 155 orchards, the high yield and high N use efficiency (HH) orchard group with younger and better educated owners achieved a higher citrus yield and N use efficiency with less fertilizer input and lower environmental costs. Five field experiments conducted by local government and Danling Science and Technology Backyard were used to further certify the reduction potential of environment costs. These field results showed that the local recommendation (LR) treatment increased citrus yield and N use efficiency by 1.9–49.5% and 38.0–116%, respectively, whereas decreased environmental costs by 21.2–35.2% when compared with the local farmer practice in the HH orchard group. These results demonstrated that an optimum nutrient management based on the local field recommendation in citrus-producing areas is crucial for achieving a win-win target of productivity and environmental sustainability in China and other, similar countries.

Suggested Citation

  • Min Yang & Quan Long & Wenli Li & Zhichao Wang & Xinhua He & Jie Wang & Xiaozhong Wang & Huaye Xiong & Chaoyi Guo & Guancheng Zhang & Bin Luo & Jun Qiu & Xinping Chen & Fusuo Zhang & Xiaojun Shi & Yue, 2020. "Mapping the Environmental Cost of a Typical Citrus-Producing County in China: Hotspot and Optimization," Sustainability, MDPI, vol. 12(5), pages 1-18, February.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:5:p:1827-:d:326396
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/5/1827/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/5/1827/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kiyotaka Masuda, 2019. "Eco-Efficiency Assessment of Intensive Rice Production in Japan: Joint Application of Life Cycle Assessment and Data Envelopment Analysis," Sustainability, MDPI, vol. 11(19), pages 1-14, September.
    2. Weiguo Fan & Peng Zhang & Zihan Xu & Hejie Wei & Nachuan Lu & Xuechao Wang & Boqi Weng & Zhongdian Chen & Feilong Wu & Xiaobin Dong, 2018. "Life Cycle Environmental Impact Assessment of Circular Agriculture: A Case Study in Fuqing, China," Sustainability, MDPI, vol. 10(6), pages 1-19, May.
    3. Yahui Lv & Chao Zhang & Jiani Ma & Wenju Yun & Lulu Gao & Pengshan Li, 2019. "Sustainability Assessment of Smallholder Farmland Systems: Healthy Farmland System Assessment Framework," Sustainability, MDPI, vol. 11(17), pages 1-19, August.
    4. Ahmed M. Youssef & Mazen M. Abu Abdullah & Biswajeet Pradhan & Ahmed F. D. Gaber, 2019. "Agriculture Sprawl Assessment Using Multi-Temporal Remote Sensing Images and Its Environmental Impact; Al-Jouf, KSA," Sustainability, MDPI, vol. 11(15), pages 1-16, August.
    5. N. Sanjuan & L. Ubeda & G. Clemente & A. Mulet & F. Girona, 2005. "LCA of integrated orange production in the Comunidad Valenciana (Spain)," International Journal of Agricultural Resources, Governance and Ecology, Inderscience Enterprises Ltd, vol. 4(2), pages 163-177.
    6. David Tilman & Kenneth G. Cassman & Pamela A. Matson & Rosamond Naylor & Stephen Polasky, 2002. "Agricultural sustainability and intensive production practices," Nature, Nature, vol. 418(6898), pages 671-677, August.
    7. Chaoyi Guo & Xiaozhong Wang & Yujia Li & Xinhua He & Wushuai Zhang & Jie Wang & Xiaojun Shi & Xinping Chen & Yueqiang Zhang, 2018. "Carbon Footprint Analyses and Potential Carbon Emission Reduction in China’s Major Peach Orchards," Sustainability, MDPI, vol. 10(8), pages 1-17, August.
    8. Nathaniel D. Mueller & James S. Gerber & Matt Johnston & Deepak K. Ray & Navin Ramankutty & Jonathan A. Foley, 2012. "Closing yield gaps through nutrient and water management," Nature, Nature, vol. 490(7419), pages 254-257, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Will McConnell, 2020. "Introduction to Sustainability Journal Special Edition “Global Warming and Sustainability Issues”," Sustainability, MDPI, vol. 12(14), pages 1-7, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dapeng WANG & Liang ZHENG & Songdong GU & Yuefeng SHI & Long LIANG & Fanqiao MENG & Yanbin GUO & Xiaotang JU & Wenliang WU, 2018. "Soil nitrate accumulation and leaching in conventional, optimized and organic cropping systems," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 64(4), pages 156-163.
    2. Xinyi Li & Xiong Wang & Xiaoqing Song, 2021. "Impacts of Agricultural Capitalization on Regional Paddy Field Change: A Production-Factor Substitution Perspective," IJERPH, MDPI, vol. 18(4), pages 1-18, February.
    3. Gou, Fang & Yin, Wen & Hong, Yu & van der Werf, Wopke & Chai, Qiang & Heerink, Nico & van Ittersum, Martin K., 2017. "On yield gaps and yield gains in intercropping: Opportunities for increasing grain production in northwest China," Agricultural Systems, Elsevier, vol. 151(C), pages 96-105.
    4. Hepburn, Cameron & Teytelboym, Alexander & Cohen, Francois, 2018. "Is Natural Capital Really Substitutable?," INET Oxford Working Papers 2018-12, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
    5. Vassilis Aschonitis & Christos G. Karydas & Miltos Iatrou & Spiros Mourelatos & Irini Metaxa & Panagiotis Tziachris & George Iatrou, 2019. "An Integrated Approach to Assessing the Soil Quality and Nutritional Status of Large and Long-Term Cultivated Rice Agro-Ecosystems," Agriculture, MDPI, vol. 9(4), pages 1-25, April.
    6. Christophe Lecarpentier & Loïc Pagès & Céline Richard-Molard, 2021. "Genotypic diversity and plasticity of root system architecture to nitrogen availability in oilseed rape," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-19, May.
    7. Yu, Wenjia & Yue, Yaojie & Wang, Fangxiong, 2022. "The spatial-temporal coupling pattern of grain yield and fertilization in the North China plain," Agricultural Systems, Elsevier, vol. 196(C).
    8. Sieglinde Snapp & Tek Bahadur Sapkota & Jordan Chamberlin & Cindy Marie Cox & Samuel Gameda & Mangi Lal Jat & Paswel Marenya & Khondoker Abdul Mottaleb & Christine Negra & Kalimuthu Senthilkumar & Tes, 2023. "Spatially differentiated nitrogen supply is key in a global food–fertilizer price crisis," Nature Sustainability, Nature, vol. 6(10), pages 1268-1278, October.
    9. Marie-Cécile Dupas & José Halloy & Petros Chatzimpiros, 2019. "Time dynamics and invariant subnetwork structures in the world cereals trade network," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-21, May.
    10. Long Liang & Bradley G. Ridoutt & Liyuan Wang, 2021. "Food Security and Climate Stabilization: Can Cereal Production Systems Address Both?," Sustainability, MDPI, vol. 13(3), pages 1-17, January.
    11. Souhil Harchaoui & Petros Chatzimpiros, 2018. "Energy, Nitrogen, and Farm Surplus Transitions in Agriculture from Historical Data Modeling. France, 1882–2013," Post-Print hal-02999180, HAL.
    12. Zhang, Chenglong & Li, Xuemin & Guo, Ping & Huo, Zailin, 2020. "An improved interval-based fuzzy credibility-constrained programming approach for supporting optimal irrigation water management under uncertainty," Agricultural Water Management, Elsevier, vol. 238(C).
    13. Elisa Morri & Riccardo Santolini, 2021. "Ecosystem Services Valuation for the Sustainable Land Use Management by Nature-Based Solution (NbS) in the Common Agricultural Policy Actions: A Case Study on the Foglia River Basin (Marche Region, It," Land, MDPI, vol. 11(1), pages 1-23, December.
    14. Liu, Duan & Tang, Runcheng & Xie, Jun & Tian, Jingjing & Shi, Rui & Zhang, Kai, 2020. "Valuation of ecosystem services of rice–fish coculture systems in Ruyuan County, China," Ecosystem Services, Elsevier, vol. 41(C).
    15. Cao, Juan & Zhang, Zhao & Tao, Fulu & Chen, Yi & Luo, Xiangzhong & Xie, Jun, 2023. "Forecasting global crop yields based on El Nino Southern Oscillation early signals," Agricultural Systems, Elsevier, vol. 205(C).
    16. Hongwei Liu & Ronglu Yang & Zhixiang Zhou & Dacheng Huang, 2020. "Regional Green Eco-Efficiency in China: Considering Energy Saving, Pollution Treatment, and External Environmental Heterogeneity," Sustainability, MDPI, vol. 12(17), pages 1-19, August.
    17. Westhoek, Henk & Ingram, John & van Berkum, Siemen & Hajer, Maarten, 2015. "The European food system and natural resources: Impacts and Options," 148th Seminar, November 30-December 1, 2015, The Hague, The Netherlands 229279, European Association of Agricultural Economists.
    18. Giacomo Falchetta & Nicolò Stevanato & Magda Moner-Girona & Davide Mazzoni & Emanuela Colombo & Manfred Hafner, 2020. "M-LED: Multi-sectoral Latent Electricity Demand Assessment for Energy Access Planning," Working Papers 2020.09, Fondazione Eni Enrico Mattei.
    19. Shen Yuan & Shaobing Peng, 2017. "Exploring the Trends in Nitrogen Input and Nitrogen Use Efficiency for Agricultural Sustainability," Sustainability, MDPI, vol. 9(10), pages 1-15, October.
    20. Katarina Arvidsson Segerkvist & Helena Hansson & Ulf Sonesson & Stefan Gunnarsson, 2021. "A Systematic Mapping of Current Literature on Sustainability at Farm-Level in Beef and Lamb Meat Production," Sustainability, MDPI, vol. 13(5), pages 1-14, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:5:p:1827-:d:326396. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.