IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i5p1523-d145724.html
   My bibliography  Save this article

Measuring the Sustainability of Construction Projects throughout Their Lifecycle: A Taiwan Lesson

Author

Listed:
  • Wen-der Yu

    (Department of Construction Engineering, Chaoyang University of Technology, Taichung 41349, Taiwan)

  • Shao-tsai Cheng

    (Department of Construction Management, Chung Hua University, Hsinchu 30012, Taiwan)

  • Wei-cheng Ho

    (Department of Civil Engineering, Chung Hua University, Hsinchu 30012, Taiwan)

  • Yu-hao Chang

    (Department of Construction Management, Chung Hua University, Hsinchu 30012, Taiwan)

Abstract

Researchers have proposed many industrial or national sustainability evaluation indicator systems during the past decade, although there has not yet been a project-level sustainability evaluation system for the evaluation and execution monitoring of the sustainability status for a construction project. Without such an evaluation system, it will be difficult for the planners to plan the sustainable project objectives, for the contractors to select the sustainable execution alternatives, and for the facility managers to operate sustainable constructed facilities. To meet the abovementioned requirements, this paper presents an effort conducted in Taiwan to propose a Construction Project Sustainability Assessing System (CPSAS) considering three pillars of sustainability: environmental, social, and economic, based on the theoretical backgrounds from the literature and former successful sustainable projects. The proposed CPSAS comprises four levels: Level 1, 3 main pillars; Level 2, 8 categories; Level 3, 19 sub-categories; and Level 4, 31 indicators. Different selections of indicators for application in different project phases are suggested according to the prioritization via questionnaire surveys. A procedure for sustainable project management with the proposed CPSAS is suggested to the project management team. Finally, three green building projects and two civil infrastructure construction projects of Taiwan were tested to demonstrate the feasibility of the proposed CPSAS. It is concluded that the proposed CPSAS is useful for construction stakeholders to achieve sustainability more effectively during the execution of a construction project.

Suggested Citation

  • Wen-der Yu & Shao-tsai Cheng & Wei-cheng Ho & Yu-hao Chang, 2018. "Measuring the Sustainability of Construction Projects throughout Their Lifecycle: A Taiwan Lesson," Sustainability, MDPI, vol. 10(5), pages 1-16, May.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:5:p:1523-:d:145724
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/5/1523/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/5/1523/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vijayaraghavan, K., 2016. "Green roofs: A critical review on the role of components, benefits, limitations and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 740-752.
    2. Munasinghe, M., 1993. "Environmental Economics and Sustainable Development," Papers 3, World Bank - The World Bank Environment Paper.
    3. Richard Hill & Paul Bowen, 1997. "Sustainable construction: principles and a framework for attainment," Construction Management and Economics, Taylor & Francis Journals, vol. 15(3), pages 223-239.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pramesh Krishnankutty & Bon-Gang Hwang & Carlos H. Caldas & Sriya Muralidharan & Daniel P. de Oliveira, 2019. "Assessing the Implementation of Best Productivity Practices in Maintenance Activities, Shutdowns, and Turnarounds of Petrochemical Plants," Sustainability, MDPI, vol. 11(5), pages 1-27, February.
    2. Butković Lana Lovrenčić, 2021. "A new framework for ranking Critical Success Factors for International Construction Projects," Organization, Technology and Management in Construction, Sciendo, vol. 13(2), pages 2505-2520, July.
    3. Nasanjargal Erdenekhuu & Balázs Kocsi & Domicián Máté, 2022. "A Risk-Based Analysis Approach to Sustainable Construction by Environmental Impacts," Energies, MDPI, vol. 15(18), pages 1-21, September.
    4. Kwo-Wuu Wang & Yuan-Yu Hsu & Wen-der Yu & Shao-tsai Cheng, 2018. "Determination of Project Procurement Method with a Graphical Analytic Model," Sustainability, MDPI, vol. 10(10), pages 1-17, October.
    5. Reza Kiani Mavi & Denise Gengatharen & Neda Kiani Mavi & Richard Hughes & Alistair Campbell & Ross Yates, 2021. "Sustainability in Construction Projects: A Systematic Literature Review," Sustainability, MDPI, vol. 13(4), pages 1-24, February.
    6. Stefano Armenia & Rosa Maria Dangelico & Fabio Nonino & Alessandro Pompei, 2019. "Sustainable Project Management: A Conceptualization-Oriented Review and a Framework Proposal for Future Studies," Sustainability, MDPI, vol. 11(9), pages 1-16, May.
    7. Perry C. Y. Liu & Huai-Wei Lo & James J. H. Liou, 2020. "A Combination of DEMATEL and BWM-Based ANP Methods for Exploring the Green Building Rating System in Taiwan," Sustainability, MDPI, vol. 12(8), pages 1-19, April.
    8. Hongyang Li & Ruoyu Jin & Xin Ning & Martin Skitmore & Tianyao Zhang, 2018. "Prioritizing the Sustainability Objectives of Major Public Projects in the Guangdong–Hong Kong–Macao Greater Bay Area," Sustainability, MDPI, vol. 10(11), pages 1-23, November.
    9. Hossam E. Hosny & Ahmed H. Ibrahim & Elin A. Eldars, 2022. "Development of infrastructure projects sustainability assessment model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 7493-7531, June.
    10. Hassan Hashemi & Parviz Ghoddousi & Farnad Nasirzadeh, 2021. "Sustainability Indicator Selection by a Novel Triangular Intuitionistic Fuzzy Decision-Making Approach in Highway Construction Projects," Sustainability, MDPI, vol. 13(3), pages 1-25, February.
    11. Ricardo P. F. Ferrarez & Claudia G. B. do Valle & Jeferson C. Alvarenga & Fabricio da C. Dias & Diego A. Vasco & André L. A. Guedes & Christine K. Chinelli & Assed N. Haddad & Carlos A. P. Soares, 2023. "Key Practices for Incorporating Sustainability in Project Management from the Perspective of Brazilian Professionals," Sustainability, MDPI, vol. 15(11), pages 1-21, May.
    12. Avinash Kumar Singh & Devendra Kumar Pathak & Sabyasachi Patra, 2023. "An integrated systems thinking approach for achieving sustainability in project‐based organizations," Systems Research and Behavioral Science, Wiley Blackwell, vol. 40(3), pages 501-535, May.
    13. Majed Alinizzi & Husnain Haider & Meshal Almoshaogeh & Fawaz Alharbi & Saleh M. Alogla & Gamal A. Al-Saadi, 2020. "Sustainability Assessment of Construction Technologies for Large Pipelines on Urban Highways: Scenario Analysis using Fuzzy QFD," Sustainability, MDPI, vol. 12(7), pages 1-20, March.
    14. Chisomo Kapatsa & Neema Kavishe & Godwin Maro & Sam Zulu, 2023. "The Identification of Sustainability Assessment Indicators for Road Infrastructure Projects in Tanzania," Sustainability, MDPI, vol. 15(20), pages 1-15, October.
    15. Zhenwen Liu & Hsi-Chi Yang & Yan-Chyuan Shiau, 2020. "Investigation on Evaluation Framework of Elementary School Teaching Materials for Sustainable Development," Sustainability, MDPI, vol. 12(9), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kwo-Wuu Wang & Yuan-Yu Hsu & Wen-der Yu & Shao-tsai Cheng, 2018. "Determination of Project Procurement Method with a Graphical Analytic Model," Sustainability, MDPI, vol. 10(10), pages 1-17, October.
    2. Yangang Xing & Phil Jones & Iain Donnison, 2017. "Characterisation of Nature-Based Solutions for the Built Environment," Sustainability, MDPI, vol. 9(1), pages 1-20, January.
    3. Mihalakakou, Giouli & Souliotis, Manolis & Papadaki, Maria & Menounou, Penelope & Dimopoulos, Panayotis & Kolokotsa, Dionysia & Paravantis, John A. & Tsangrassoulis, Aris & Panaras, Giorgos & Giannako, 2023. "Green roofs as a nature-based solution for improving urban sustainability: Progress and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    4. Weiwei Li & Pingtao Yi & Danning Zhang, 2018. "Sustainability Evaluation of Cities in Northeastern China Using Dynamic TOPSIS-Entropy Methods," Sustainability, MDPI, vol. 10(12), pages 1-15, December.
    5. Rafael Herrera-Limones & Ángel Luis León-Rodríguez & Álvaro López-Escamilla, 2019. "Solar Decathlon Latin America and Caribbean: Comfort and the Balance between Passive and Active Design," Sustainability, MDPI, vol. 11(13), pages 1-17, June.
    6. Cristina S. C. Calheiros & Alexandros I. Stefanakis, 2021. "Green Roofs Towards Circular and Resilient Cities," Circular Economy and Sustainability,, Springer.
    7. Muhammad Haseeb & Muhammad Azam, 2021. "Dynamic nexus among tourism, corruption, democracy and environmental degradation: a panel data investigation," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5557-5575, April.
    8. Reza Kiani Mavi & Denise Gengatharen & Neda Kiani Mavi & Richard Hughes & Alistair Campbell & Ross Yates, 2021. "Sustainability in Construction Projects: A Systematic Literature Review," Sustainability, MDPI, vol. 13(4), pages 1-24, February.
    9. Collados, Cecilia & Duane, Timothy P., 1999. "Natural capital and quality of life: a model for evaluating the sustainability of alternative regional development paths," Ecological Economics, Elsevier, vol. 30(3), pages 441-460, September.
    10. Faruqee, Rashid, 1997. "Using economic policy to improve environmental protection in Pakistan," Policy Research Working Paper Series 1757, The World Bank.
    11. Lorenz Werndle & Nick Brown & Mike Packer, 2006. "Barriers to certified timber and paper uptake in the construction and paper industries in the United Kingdom," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 13(3), pages 121-134, July.
    12. World Bank, 2014. "Armenia : Sustainable and Strategic Decision Making in Mining," World Bank Publications - Reports 18958, The World Bank Group.
    13. Gabriel Jobidon & Pierre Lemieux & Robert Beauregard, 2019. "Comparison of Quebec’s Project Delivery Methods: Relational Contract Law and Differences in Contractual Language," Laws, MDPI, vol. 8(2), pages 1-75, April.
    14. Aryn Lisitza & Gregor Wolbring, 2016. "Sustainability within the Academic EcoHealth Literature: Existing Engagement and Future Prospects," Sustainability, MDPI, vol. 8(3), pages 1-22, February.
    15. Iwaro, Joseph & Mwasha, Abrahams & Williams, Rupert G. & Zico, Ricardo, 2014. "An Integrated Criteria Weighting Framework for the sustainable performance assessment and design of building envelope," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 417-434.
    16. Aldossary, Naief A. & Rezgui, Yacine & Kwan, Alan, 2015. "Consensus-based low carbon domestic design framework for sustainable homes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 417-432.
    17. Abdul Naser Majidi & Zoran Vojinovic & Alida Alves & Sutat Weesakul & Arlex Sanchez & Floris Boogaard & Jeroen Kluck, 2019. "Planning Nature-Based Solutions for Urban Flood Reduction and Thermal Comfort Enhancement," Sustainability, MDPI, vol. 11(22), pages 1-27, November.
    18. Noemi Caltabellotta & Felicia Cavaleri & Carlo Greco & Kestutis Navickas & Carlo Scibetta & Laura Giammanco, 2019. "Integration of green roofs&walls in urban areas," RIVISTA DI STUDI SULLA SOSTENIBILITA', FrancoAngeli Editore, vol. 0(2 Suppl.), pages 61-78.
    19. Manso, Maria & Teotónio, Inês & Silva, Cristina Matos & Cruz, Carlos Oliveira, 2021. "Green roof and green wall benefits and costs: A review of the quantitative evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:5:p:1523-:d:145724. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.