IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i5p1394-d144102.html
   My bibliography  Save this article

Change of Real and Simulated Energy Production of Certain Photovoltaic Technologies in Relation to Orientation, Tilt Angle and Dual-Axis Sun-Tracking. A Case Study in Hungary

Author

Listed:
  • Henrik Zsiborács

    (Department of Economic Methodology, University of Pannonia, Georgikon Faculty, 8360 Keszthely, Hungary)

  • Attila Bai
  • József Popp
  • Zoltán Gabnai
  • Béla Pályi
  • István Farkas
  • Nóra Hegedűsné Baranyai

    (Department of Economic Methodology, University of Pannonia, Georgikon Faculty, 8360 Keszthely, Hungary)

  • Mihály Veszelka
  • László Zentkó
  • Gábor Pintér

    (Department of Economic Methodology, University of Pannonia, Georgikon Faculty, 8360 Keszthely, Hungary)

Abstract

The aim of the study is to compare the tilt angle-orientation and dual-axis tracking characteristics of mono- (m-Si), polycrystalline (p-Si), and amorphous silicon (a-Si) modules in the summer of 2017, under real meteorological conditions with simulated data. The most important new element of our study is that, besides a comparison of the three most significant photovoltaic types, the technologies are differentiated by examining specific energy generation using dual-axis tracking and four different orientations at 5-degree intervals compared to simulated values, near to the summer solstice. For these types of measurements, as far as we are aware, there is no previous reliable, well-supported, comparative data. The simulated data show less accurate results, proving the importance of real data. Based on simulated data, the tilt angle and orientation showed about 10% favorable values compared to reality. Knowing our results can make it easier to plan investment, and estimate the investment and operational costs and their return on crystalline and amorphous silicon solar modules, for both sun-tracking and fixed systems with various orientations and tilt angles.

Suggested Citation

  • Henrik Zsiborács & Attila Bai & József Popp & Zoltán Gabnai & Béla Pályi & István Farkas & Nóra Hegedűsné Baranyai & Mihály Veszelka & László Zentkó & Gábor Pintér, 2018. "Change of Real and Simulated Energy Production of Certain Photovoltaic Technologies in Relation to Orientation, Tilt Angle and Dual-Axis Sun-Tracking. A Case Study in Hungary," Sustainability, MDPI, vol. 10(5), pages 1-19, May.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:5:p:1394-:d:144102
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/5/1394/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/5/1394/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Khan, Jibran & Arsalan, Mudassar H., 2016. "Solar power technologies for sustainable electricity generation – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 414-425.
    2. Pandey, A.K. & Tyagi, V.V. & Selvaraj, Jeyraj A/L & Rahim, N.A. & Tyagi, S.K., 2016. "Recent advances in solar photovoltaic systems for emerging trends and advanced applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 859-884.
    3. Kacira, Murat & Simsek, Mehmet & Babur, Yunus & Demirkol, Sedat, 2004. "Determining optimum tilt angles and orientations of photovoltaic panels in Sanliurfa, Turkey," Renewable Energy, Elsevier, vol. 29(8), pages 1265-1275.
    4. Pérez-Higueras, P. & Muñoz, E. & Almonacid, G. & Vidal, P.G., 2011. "High Concentrator PhotoVoltaics efficiencies: Present status and forecast," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1810-1815, May.
    5. Kumar Sahu, Bikash, 2015. "A study on global solar PV energy developments and policies with special focus on the top ten solar PV power producing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 621-634.
    6. Chang, Tian Pau, 2009. "Output energy of a photovoltaic module mounted on a single-axis tracking system," Applied Energy, Elsevier, vol. 86(10), pages 2071-2078, October.
    7. Gao, Xian-Zhong & Hou, Zhong-Xi & Guo, Zheng & Chen, Xiao-Qian, 2015. "Reviews of methods to extract and store energy for solar-powered aircraft," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 96-108.
    8. Hosenuzzaman, M. & Rahim, N.A. & Selvaraj, J. & Hasanuzzaman, M. & Malek, A.B.M.A. & Nahar, A., 2015. "Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 284-297.
    9. Koussa, M. & Cheknane, A. & Hadji, S. & Haddadi, M. & Noureddine, S., 2011. "Measured and modelled improvement in solar energy yield from flat plate photovoltaic systems utilizing different tracking systems and under a range of environmental conditions," Applied Energy, Elsevier, vol. 88(5), pages 1756-1771, May.
    10. Abbe, G. & Smith, H., 2016. "Technological development trends in Solar‐powered Aircraft Systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 770-783.
    11. Talavera, D.L. & Pérez-Higueras, P. & Ruíz-Arias, J.A. & Fernández, E.F., 2015. "Levelised cost of electricity in high concentrated photovoltaic grid connected systems: Spatial analysis of Spain," Applied Energy, Elsevier, vol. 151(C), pages 49-59.
    12. García-Domingo, B. & Piliougine, M. & Elizondo, D. & Aguilera, J., 2015. "CPV module electric characterisation by artificial neural networks," Renewable Energy, Elsevier, vol. 78(C), pages 173-181.
    13. Renzi, M. & Egidi, L. & Comodi, G., 2015. "Performance analysis of two 3.5kWp CPV systems under real operating conditions," Applied Energy, Elsevier, vol. 160(C), pages 687-696.
    14. Sharon, H. & Reddy, K.S., 2015. "A review of solar energy driven desalination technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1080-1118.
    15. Bai, Attila & Popp, József & Balogh, Péter & Gabnai, Zoltán & Pályi, Béla & Farkas, István & Pintér, Gábor & Zsiborács, Henrik, 2016. "Technical and economic effects of cooling of monocrystalline photovoltaic modules under Hungarian conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1086-1099.
    16. Tyagi, V.V. & Rahim, Nurul A.A. & Rahim, N.A. & Selvaraj, Jeyraj A./L., 2013. "Progress in solar PV technology: Research and achievement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 443-461.
    17. Guney, Mukrimin Sevket, 2016. "Solar power and application methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 776-785.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diane Palmer & Elena Koumpli & Ian Cole & Ralph Gottschalg & Thomas Betts, 2018. "A GIS-Based Method for Identification of Wide Area Rooftop Suitability for Minimum Size PV Systems Using LiDAR Data and Photogrammetry," Energies, MDPI, vol. 11(12), pages 1-22, December.
    2. Hyunji Lee & Katherine A. Kim, 2018. "Design Considerations for Parallel Differential Power Processing Converters in a Photovoltaic-Powered Wearable Application," Energies, MDPI, vol. 11(12), pages 1-17, November.
    3. Xiaoyang Song & Yaohuan Huang & Chuanpeng Zhao & Yuxin Liu & Yanguo Lu & Yongguo Chang & Jie Yang, 2018. "An Approach for Estimating Solar Photovoltaic Potential Based on Rooftop Retrieval from Remote Sensing Images," Energies, MDPI, vol. 11(11), pages 1-14, November.
    4. Ramez Abdallah & Emad Natsheh & Adel Juaidi & Sufyan Samara & Francisco Manzano-Agugliaro, 2020. "A Multi-Level World Comprehensive Neural Network Model for Maximum Annual Solar Irradiation on a Flat Surface," Energies, MDPI, vol. 13(23), pages 1-31, December.
    5. Ibrahim Sufian Osman & Nasir Ghazi Hariri, 2022. "Thermal Investigation and Optimized Design of a Novel Solar Self-Driven Thermomechanical Actuator," Sustainability, MDPI, vol. 14(9), pages 1-23, April.
    6. Bojan Kranjec & Sasa Sladic & Wojciech Giernacki & Neven Bulic, 2018. "PV System Design and Flight Efficiency Considerations for Fixed-Wing Radio-Controlled Aircraft—A Case Study," Energies, MDPI, vol. 11(10), pages 1-12, October.
    7. Alin Lin & Ming Lu & Pingjun Sun, 2018. "The Influence of Local Environmental, Economic and Social Variables on the Spatial Distribution of Photovoltaic Applications across China’s Urban Areas," Energies, MDPI, vol. 11(8), pages 1-14, July.
    8. Yang Du & Ke Yan & Zixiao Ren & Weidong Xiao, 2018. "Designing Localized MPPT for PV Systems Using Fuzzy-Weighted Extreme Learning Machine," Energies, MDPI, vol. 11(10), pages 1-10, October.
    9. Tao Yi & Ling Tong & Mohan Qiu & Jinpeng Liu, 2019. "Analysis of Driving Factors of Photovoltaic Power Generation Efficiency: A Case Study in China," Energies, MDPI, vol. 12(3), pages 1-15, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bai, Attila & Popp, József & Balogh, Péter & Gabnai, Zoltán & Pályi, Béla & Farkas, István & Pintér, Gábor & Zsiborács, Henrik, 2016. "Technical and economic effects of cooling of monocrystalline photovoltaic modules under Hungarian conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1086-1099.
    2. Li, Guiqiang & Xuan, Qingdong & Pei, Gang & Su, Yuehong & Ji, Jie, 2018. "Effect of non-uniform illumination and temperature distribution on concentrating solar cell - A review," Energy, Elsevier, vol. 144(C), pages 1119-1136.
    3. Gábor Pintér & Henrik Zsiborács & Nóra Hegedűsné Baranyai & András Vincze & Zoltán Birkner, 2020. "The Economic and Geographical Aspects of the Status of Small-Scale Photovoltaic Systems in Hungary—A Case Study," Energies, MDPI, vol. 13(13), pages 1-22, July.
    4. Gábor Pintér & Nóra Hegedűsné Baranyai & Alec Wiliams & Henrik Zsiborács, 2018. "Study of Photovoltaics and LED Energy Efficiency: Case Study in Hungary," Energies, MDPI, vol. 11(4), pages 1-13, March.
    5. Kumar, Manish & Kumar, Arun, 2017. "Performance assessment and degradation analysis of solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 554-587.
    6. Maria Simona Răboacă & Gheorghe Badea & Adrian Enache & Constantin Filote & Gabriel Răsoi & Mihai Rata & Alexandru Lavric & Raluca-Andreea Felseghi, 2019. "Concentrating Solar Power Technologies," Energies, MDPI, vol. 12(6), pages 1-17, March.
    7. Almonacid, Florencia & Fernandez, Eduardo F. & Mellit, Adel & Kalogirou, Soteris, 2017. "Review of techniques based on artificial neural networks for the electrical characterization of concentrator photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 938-953.
    8. Ramírez, F. Javier & Honrubia-Escribano, A. & Gómez-Lázaro, E. & Pham, Duc T., 2017. "Combining feed-in tariffs and net-metering schemes to balance development in adoption of photovoltaic energy: Comparative economic assessment and policy implications for European countries," Energy Policy, Elsevier, vol. 102(C), pages 440-452.
    9. Bahrami, Arian & Okoye, Chiemeka Onyeka & Atikol, Ugur, 2016. "The effect of latitude on the performance of different solar trackers in Europe and Africa," Applied Energy, Elsevier, vol. 177(C), pages 896-906.
    10. Rodrigo, P. & Velázquez, Ramiro & Fernández, Eduardo F. & Almonacid, F. & Pérez-Higueras, P.J., 2016. "Analysis of electrical mismatches in high-concentrator photovoltaic power plants with distributed inverter configurations," Energy, Elsevier, vol. 107(C), pages 374-387.
    11. Bórawski, Piotr & Holden, Lisa & Bełdycka-Bórawska, Aneta, 2023. "Perspectives of photovoltaic energy market development in the european union," Energy, Elsevier, vol. 270(C).
    12. Xing, Yupeng & Han, Peide & Wang, Shuai & Liang, Peng & Lou, Shishu & Zhang, Yuanbo & Hu, Shaoxu & Zhu, Huishi & Zhao, Chunhua & Mi, Yanhong, 2015. "A review of concentrator silicon solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1697-1708.
    13. Shabani, Masoume & Mahmoudimehr, Javad, 2018. "Techno-economic role of PV tracking technology in a hybrid PV-hydroelectric standalone power system," Applied Energy, Elsevier, vol. 212(C), pages 84-108.
    14. Gábor Pintér, 2020. "The Potential Role of Power-to-Gas Technology Connected to Photovoltaic Power Plants in the Visegrad Countries—A Case Study," Energies, MDPI, vol. 13(23), pages 1-14, December.
    15. Nsengiyumva, Walter & Chen, Shi Guo & Hu, Lihua & Chen, Xueyong, 2018. "Recent advancements and challenges in Solar Tracking Systems (STS): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 250-279.
    16. Fernández, Eduardo F. & Talavera, D.L. & Almonacid, Florencia M. & Smestad, Greg P., 2016. "Investigating the impact of weather variables on the energy yield and cost of energy of grid-connected solar concentrator systems," Energy, Elsevier, vol. 106(C), pages 790-801.
    17. Moh’d Al-Nimr & Abdallah Milhem & Basel Al-Bishawi & Khaleel Al Khasawneh, 2020. "Integrating Transparent and Conventional Solar Cells TSC/SC," Sustainability, MDPI, vol. 12(18), pages 1-22, September.
    18. Lin, Chia-Hung & Huang, Cong-Hui & Du, Yi-Chun & Chen, Jian-Liung, 2011. "Maximum photovoltaic power tracking for the PV array using the fractional-order incremental conductance method," Applied Energy, Elsevier, vol. 88(12), pages 4840-4847.
    19. Benghanem, M., 2011. "Optimization of tilt angle for solar panel: Case study for Madinah, Saudi Arabia," Applied Energy, Elsevier, vol. 88(4), pages 1427-1433, April.
    20. Fang, Hong & Wang, Xu & Song, Wenyan, 2020. "Technology selection for photovoltaic cell from sustainability perspective: An integrated approach," Renewable Energy, Elsevier, vol. 153(C), pages 1029-1041.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:5:p:1394-:d:144102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.