IDEAS home Printed from https://ideas.repec.org/a/gam/jstats/v8y2025i2p41-d1660055.html
   My bibliography  Save this article

Revisiting the Replication Crisis and the Untrustworthiness of Empirical Evidence

Author

Listed:
  • Aris Spanos

    (Department of Economics, Virginia Tech, Blacksburg, VA 24061, USA)

Abstract

The current replication crisis relating to the non-replicability and the untrustworthiness of published empirical evidence is often viewed through the lens of the Positive Predictive Value (PPV) in the context of the Medical Diagnostic Screening (MDS) model. The PPV is misconstrued as a measure that evaluates ‘the probability of rejecting H 0 when false’, after being metamorphosed by replacing its false positive/negative probabilities with the type I/II error probabilities. This perspective gave rise to a widely accepted diagnosis that the untrustworthiness of published empirical evidence stems primarily from abuses of frequentist testing, including p-hacking, data-dredging, and cherry-picking. It is argued that the metamorphosed PPV misrepresents frequentist testing and misdiagnoses the replication crisis, promoting ill-chosen reforms. The primary source of untrustworthiness is statistical misspecification : invalid probabilistic assumptions imposed on one’s data. This is symptomatic of the much broader problem of the uninformed and recipe-like implementation of frequentist statistics without proper understanding of (a) the invoked probabilistic assumptions and their validity for the data used, (b) the reasoned implementation and interpretation of the inference procedures and their error probabilities, and (c) warranted evidential interpretations of inference results. A case is made that Fisher’s model-based statistics offers a more pertinent and incisive diagnosis of the replication crisis, and provides a well-grounded framework for addressing the issues (a)–(c), which would unriddle the non-replicability/untrustworthiness problems.

Suggested Citation

  • Aris Spanos, 2025. "Revisiting the Replication Crisis and the Untrustworthiness of Empirical Evidence," Stats, MDPI, vol. 8(2), pages 1-21, May.
  • Handle: RePEc:gam:jstats:v:8:y:2025:i:2:p:41-:d:1660055
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-905X/8/2/41/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-905X/8/2/41/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jan H. Höffler, 2017. "Replication and Economics Journal Policies," American Economic Review, American Economic Association, vol. 107(5), pages 52-55, May.
    2. Aris Spanos, 2023. "Revisiting the Large n (Sample Size) Problem: How to Avert Spurious Significance Results," Stats, MDPI, vol. 6(4), pages 1-16, December.
    3. Valen E. Johnson & Richard D. Payne & Tianying Wang & Alex Asher & Soutrik Mandal, 2017. "On the Reproducibility of Psychological Science," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 1-10, January.
    4. Hoang‐Phuong Do & Aris Spanos, 2024. "Revisiting the Phillips Curve: The Empirical Relationship Yet to be Validated," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(4), pages 761-793, August.
    5. Aris Spanos, 2018. "Mis†Specification Testing In Retrospect," Journal of Economic Surveys, Wiley Blackwell, vol. 32(2), pages 541-577, April.
    6. Elena Andreou & Aris Spanos, 2003. "Statistical Adequacy and the Testing of Trend Versus Difference Stationarity," Econometric Reviews, Taylor & Francis Journals, vol. 22(3), pages 217-237, January.
    7. Camerer, Colin & Dreber, Anna & Forsell, Eskil & Ho, Teck-Hua & Huber, Jurgen & Johannesson, Magnus & Kirchler, Michael & Almenberg, Johan & Altmejd, Adam & Chan, Taizan & Heikensten, Emma & Holzmeist, 2016. "Evaluating replicability of laboratory experiments in Economics," MPRA Paper 75461, University Library of Munich, Germany.
    8. Jeffrey T. Leek & Roger D. Peng, 2015. "Statistics: P values are just the tip of the iceberg," Nature, Nature, vol. 520(7549), pages 612-612, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eszter Czibor & David Jimenez‐Gomez & John A. List, 2019. "The Dozen Things Experimental Economists Should Do (More of)," Southern Economic Journal, John Wiley & Sons, vol. 86(2), pages 371-432, October.
    2. Miloš Fišar & Ben Greiner & Christoph Huber & Elena Katok & Ali I. Ozkes, 2024. "Reproducibility in Management Science," Management Science, INFORMS, vol. 70(3), pages 1343-1356, March.
    3. Ankel-Peters, Jörg & Fiala, Nathan & Neubauer, Florian, 2023. "Do economists replicate?," Journal of Economic Behavior & Organization, Elsevier, vol. 212(C), pages 219-232.
    4. Christian Leuz, 2018. "Evidence-based policymaking: promise, challenges and opportunities for accounting and financial markets research," Accounting and Business Research, Taylor & Francis Journals, vol. 48(5), pages 582-608, July.
    5. Anna Dreber & Magnus Johannesson, 2025. "A framework for evaluating reproducibility and replicability in economics," Economic Inquiry, Western Economic Association International, vol. 63(2), pages 338-356, April.
    6. Mueller-Langer, Frank & Fecher, Benedikt & Harhoff, Dietmar & Wagner, Gert G., 2019. "Replication studies in economics—How many and which papers are chosen for replication, and why?," Research Policy, Elsevier, vol. 48(1), pages 62-83.
    7. Lucas C. Coffman & Muriel Niederle & Alistair J. Wilson, 2017. "A Proposal to Organize and Promote Replications," American Economic Review, American Economic Association, vol. 107(5), pages 41-45, May.
    8. Oliver Braganza, 2020. "A simple model suggesting economically rational sample-size choice drives irreproducibility," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-19, March.
    9. repec:osf:osfxxx:mydzv_v1 is not listed on IDEAS
    10. Jeff Miller & Rolf Ulrich, 2019. "The quest for an optimal alpha," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-13, January.
    11. Samuel Pawel & Leonhard Held, 2022. "The sceptical Bayes factor for the assessment of replication success," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 879-911, July.
    12. Forsell, Eskil & Viganola, Domenico & Pfeiffer, Thomas & Almenberg, Johan & Wilson, Brad & Chen, Yiling & Nosek, Brian A. & Johannesson, Magnus & Dreber, Anna, 2019. "Predicting replication outcomes in the Many Labs 2 study," Journal of Economic Psychology, Elsevier, vol. 75(PA).
    13. Kenneth Button, 2020. "Studying the empirical implications of the liberalization of airport markets," Competition and Regulation in Network Industries, , vol. 21(3), pages 223-243, September.
    14. Aris Spanos, 2022. "Frequentist Model-based Statistical Induction and the Replication Crisis," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 20(1), pages 133-159, September.
    15. Mueller-Langer, Frank & Andreoli-Versbach, Patrick, 2018. "Open access to research data: Strategic delay and the ambiguous welfare effects of mandatory data disclosure," Information Economics and Policy, Elsevier, vol. 42(C), pages 20-34.
    16. Gechert, Sebastian & Mey, Bianka & Opatrny, Matej & Havranek, Tomas & Stanley, T. D. & Bom, Pedro R. D. & Doucouliagos, Hristos & Heimberger, Philipp & Irsova, Zuzana & Rachinger, Heiko J., 2023. "Conventional Wisdom, Meta-Analysis, and Research Revision in Economics," EconStor Preprints 280745, ZBW - Leibniz Information Centre for Economics.
    17. Phil Armstrong, 2020. "Can Heterodox Economics Make a Difference?," Books, Edward Elgar Publishing, number 19964, March.
    18. Bigoni, Maria & Camera, Gabriele & Casari, Marco, 2020. "Money is more than memory," Journal of Monetary Economics, Elsevier, vol. 110(C), pages 99-115.
    19. Okunade, Albert & Osmani, Ahmad, 2020. "Effects of life expectancy on economic growth: New results using the flexible Box-Cox power transformation model," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, issue Latest Ar.
    20. Brice Corgnet & Cary Deck & Mark DeSantis & Kyle Hampton & Erik O. Kimbrough, 2023. "When Do Security Markets Aggregate Dispersed Information?," Management Science, INFORMS, vol. 69(6), pages 3697-3729, June.
    21. Lorko, Matej & Servátka, Maroš & Zhang, Le, 2023. "Hidden inefficiency: Strategic inflation of project schedules," Journal of Economic Behavior & Organization, Elsevier, vol. 206(C), pages 313-326.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:8:y:2025:i:2:p:41-:d:1660055. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.