IDEAS home Printed from https://ideas.repec.org/a/gam/jstats/v7y2024i2p31-520d1410539.html
   My bibliography  Save this article

A Spatial Gaussian-Process Boosting Analysis of Socioeconomic Disparities in Wait-Listing of End-Stage Kidney Disease Patients across the United States

Author

Listed:
  • Sounak Chakraborty

    (Department of Statistics, University of Missouri, 209F Middlebush Hall, Columbia, MO 65211, USA)

  • Tanujit Dey

    (Center for Surgery & Public Health, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, 1620 Tremont Street, Suite 2-016, Boston, MA 02120, USA)

  • Lingwei Xiang

    (Center for Surgery & Public Health, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, 1620 Tremont Street, Suite 2-016, Boston, MA 02120, USA)

  • Joel T. Adler

    (Division of Transplant Surgery, Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, University Station, Mail Stop A3000, Austin, TX 78712, USA)

Abstract

In this study, we employed a novel approach of combining Gaussian processes (GPs) with boosting techniques to model the spatial variability inherent in End-Stage Kidney Disease (ESKD) data. Our use of the Gaussian processes boosting, or GPBoost, methodology underscores the efficacy of this hybrid method in capturing intricate spatial dynamics and enhancing predictive accuracy. Specifically, our analysis demonstrates a notable improvement in out-of-sample prediction accuracy regarding the percentage of the population remaining on the wait list within geographic regions. Furthermore, our investigation unveils race and gender-based factors that significantly influence patient wait-listing. By leveraging the GPBoost approach, we identify these pertinent factors, shedding light on the complex interplay between demographic variables and access to kidney transplantation services. Our findings underscore the imperative for a multifaceted strategy aimed at reducing spatial disparities in kidney transplant wait-listing. Key components of such an approach include mitigating gender disparities, bolstering access to healthcare services, fostering greater awareness of transplantation options, and dismantling structural barriers to care. By addressing these multifactorial challenges, we can strive towards a more equitable and inclusive landscape in kidney transplantation.

Suggested Citation

  • Sounak Chakraborty & Tanujit Dey & Lingwei Xiang & Joel T. Adler, 2024. "A Spatial Gaussian-Process Boosting Analysis of Socioeconomic Disparities in Wait-Listing of End-Stage Kidney Disease Patients across the United States," Stats, MDPI, vol. 7(2), pages 1-13, June.
  • Handle: RePEc:gam:jstats:v:7:y:2024:i:2:p:31-520:d:1410539
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-905X/7/2/31/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-905X/7/2/31/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marc C. Kennedy & Anthony O'Hagan, 2001. "Bayesian calibration of computer models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(3), pages 425-464.
    2. Tilmann Gneiting & Fadoua Balabdaoui & Adrian E. Raftery, 2007. "Probabilistic forecasts, calibration and sharpness," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 243-268, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthias Katzfuss & Joseph Guinness & Wenlong Gong & Daniel Zilber, 2020. "Vecchia Approximations of Gaussian-Process Predictions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 383-414, September.
    2. Maneesoonthorn, Worapree & Martin, Gael M. & Forbes, Catherine S. & Grose, Simone D., 2012. "Probabilistic forecasts of volatility and its risk premia," Journal of Econometrics, Elsevier, vol. 171(2), pages 217-236.
    3. Hao Wu & Michael Browne, 2015. "Random Model Discrepancy: Interpretations and Technicalities (A Rejoinder)," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 619-624, September.
    4. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    5. Xiaoyu Xiong & Benjamin D. Youngman & Theodoros Economou, 2021. "Data fusion with Gaussian processes for estimation of environmental hazard events," Environmetrics, John Wiley & Sons, Ltd., vol. 32(3), May.
    6. Petropoulos, G. & Wooster, M.J. & Carlson, T.N. & Kennedy, M.C. & Scholze, M., 2009. "A global Bayesian sensitivity analysis of the 1d SimSphere soil–vegetation–atmospheric transfer (SVAT) model using Gaussian model emulation," Ecological Modelling, Elsevier, vol. 220(19), pages 2427-2440.
    7. Drignei, Dorin, 2011. "A general statistical model for computer experiments with time series output," Reliability Engineering and System Safety, Elsevier, vol. 96(4), pages 460-467.
    8. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    9. Tilmann Gneiting & Larissa Stanberry & Eric Grimit & Leonhard Held & Nicholas Johnson, 2008. "Rejoinder on: Assessing probabilistic forecasts of multivariate quantities, with an application to ensemble predictions of surface winds," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(2), pages 256-264, August.
    10. Daniel Cervone & Alex D’Amour & Luke Bornn & Kirk Goldsberry, 2016. "A Multiresolution Stochastic Process Model for Predicting Basketball Possession Outcomes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 585-599, April.
    11. Bijak Jakub & Alberts Isabel & Alho Juha & Bryant John & Buettner Thomas & Falkingham Jane & Forster Jonathan J. & Gerland Patrick & King Thomas & Onorante Luca & Keilman Nico & O’Hagan Anthony & Owen, 2015. "Letter to the Editor," Journal of Official Statistics, Sciendo, vol. 31(4), pages 537-544, December.
    12. Yuan, Jun & Ng, Szu Hui, 2013. "A sequential approach for stochastic computer model calibration and prediction," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 273-286.
    13. Sigrist, Fabio & Leuenberger, Nicola, 2023. "Machine learning for corporate default risk: Multi-period prediction, frailty correlation, loan portfolios, and tail probabilities," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1390-1406.
    14. Wen, Honglin & Pinson, Pierre & Gu, Jie & Jin, Zhijian, 2024. "Wind energy forecasting with missing values within a fully conditional specification framework," International Journal of Forecasting, Elsevier, vol. 40(1), pages 77-95.
    15. Edward Boone & Jan Hannig & Ryad Ghanam & Sujit Ghosh & Fabrizio Ruggeri & Serge Prudhomme, 2022. "Model Validation of a Single Degree-of-Freedom Oscillator: A Case Study," Stats, MDPI, vol. 5(4), pages 1-17, November.
    16. Mike Ludkovski & Glen Swindle & Eric Grannan, 2022. "Large Scale Probabilistic Simulation of Renewables Production," Papers 2205.04736, arXiv.org.
    17. Abokersh, Mohamed Hany & Vallès, Manel & Cabeza, Luisa F. & Boer, Dieter, 2020. "A framework for the optimal integration of solar assisted district heating in different urban sized communities: A robust machine learning approach incorporating global sensitivity analysis," Applied Energy, Elsevier, vol. 267(C).
    18. Ganics, Gergely & Odendahl, Florens, 2021. "Bayesian VAR forecasts, survey information, and structural change in the euro area," International Journal of Forecasting, Elsevier, vol. 37(2), pages 971-999.
    19. Campbell, Katherine, 2006. "Statistical calibration of computer simulations," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1358-1363.
    20. Geweke, John & Amisano, Gianni, 2011. "Optimal prediction pools," Journal of Econometrics, Elsevier, vol. 164(1), pages 130-141, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:7:y:2024:i:2:p:31-520:d:1410539. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.