IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v7y2019i2p55-d231229.html
   My bibliography  Save this article

Model Efficiency and Uncertainty in Quantile Estimation of Loss Severity Distributions

Author

Listed:
  • Vytaras Brazauskas

    (Department of Mathematical Sciences, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201, USA)

  • Sahadeb Upretee

    (Department of Mathematical Sciences, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201, USA)

Abstract

Quantiles of probability distributions play a central role in the definition of risk measures (e.g., value-at-risk, conditional tail expectation) which in turn are used to capture the riskiness of the distribution tail. Estimates of risk measures are needed in many practical situations such as in pricing of extreme events, developing reserve estimates, designing risk transfer strategies, and allocating capital. In this paper, we present the empirical nonparametric and two types of parametric estimators of quantiles at various levels. For parametric estimation, we employ the maximum likelihood and percentile-matching approaches. Asymptotic distributions of all the estimators under consideration are derived when data are left-truncated and right-censored, which is a typical loss variable modification in insurance. Then, we construct relative efficiency curves (REC) for all the parametric estimators. Specific examples of such curves are provided for exponential and single-parameter Pareto distributions for a few data truncation and censoring cases. Additionally, using simulated data we examine how wrong quantile estimates can be when one makes incorrect modeling assumptions. The numerical analysis is also supplemented with standard model diagnostics and validation (e.g., quantile-quantile plots, goodness-of-fit tests, information criteria) and presents an example of when those methods can mislead the decision maker. These findings pave the way for further work on RECs with potential for them being developed into an effective diagnostic tool in this context.

Suggested Citation

  • Vytaras Brazauskas & Sahadeb Upretee, 2019. "Model Efficiency and Uncertainty in Quantile Estimation of Loss Severity Distributions," Risks, MDPI, vol. 7(2), pages 1-16, May.
  • Handle: RePEc:gam:jrisks:v:7:y:2019:i:2:p:55-:d:231229
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/7/2/55/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/7/2/55/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bignozzi, Valeria & Puccetti, Giovanni & Rüschendorf, Ludger, 2015. "Reducing model risk via positive and negative dependence assumptions," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 17-26.
    2. Thomas Kaiser & Vytaras Brazauskas, 2006. "Interval Estimation of Actuarial Risk Measures," North American Actuarial Journal, Taylor & Francis Journals, vol. 10(4), pages 249-268.
    3. Daoping Yu & Vytaras Brazauskas, 2017. "Model Uncertainty in Operational Risk Modeling Due to Data Truncation: A Single Risk Case," Risks, MDPI, vol. 5(3), pages 1-17, September.
    4. Samanthi, Ranadeera G.M. & Wei, Wei & Brazauskas, Vytaras, 2017. "Comparing the riskiness of dependent portfolios via nested L-statistics," Annals of Actuarial Science, Cambridge University Press, vol. 11(2), pages 237-252, September.
    5. Bruce Jones & Ričardas Zitikis, 2003. "Empirical Estimation of Risk Measures and Related Quantities," North American Actuarial Journal, Taylor & Francis Journals, vol. 7(4), pages 44-54.
    6. Rama Cont & Romain Deguest & Giacomo Scandolo, 2010. "Robustness and sensitivity analysis of risk measurement procedures," Post-Print hal-00413729, HAL.
    7. Cairns, Andrew J. G., 2000. "A discussion of parameter and model uncertainty in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 27(3), pages 313-330, December.
    8. Rama Cont & Romain Deguest & Giacomo Scandolo, 2010. "Robustness and sensitivity analysis of risk measurement procedures," Quantitative Finance, Taylor & Francis Journals, vol. 10(6), pages 593-606.
    9. Vytaras Brazauskas, 2009. "Quantile estimation and the statistical relative efficiency curve," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 289-301.
    10. Paul Embrechts & Bin Wang & Ruodu Wang, 2015. "Aggregation-robustness and model uncertainty of regulatory risk measures," Finance and Stochastics, Springer, vol. 19(4), pages 763-790, October.
    11. Vytaras Brazauskas & Andreas Kleefeld, 2016. "Modeling Severity and Measuring Tail Risk of Norwegian Fire Claims," North American Actuarial Journal, Taylor & Francis Journals, vol. 20(1), pages 1-16, January.
    12. Paul Glasserman & Xingbo Xu, 2014. "Robust risk measurement and model risk," Quantitative Finance, Taylor & Francis Journals, vol. 14(1), pages 29-58, January.
    13. Modarres, Reza & Nayak, Tapan K. & Gastwirth, Joseph L., 2002. "Estimation of upper quantiles under model and parameter uncertainty," Computational Statistics & Data Analysis, Elsevier, vol. 39(4), pages 529-554, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carole Bernard & Ludger Rüschendorf & Steven Vanduffel & Ruodu Wang, 2017. "Risk bounds for factor models," Finance and Stochastics, Springer, vol. 21(3), pages 631-659, July.
    2. Steven Kou & Xianhua Peng, 2016. "On the Measurement of Economic Tail Risk," Operations Research, INFORMS, vol. 64(5), pages 1056-1072, October.
    3. Carole Bernard & Silvana M. Pesenti & Steven Vanduffel, 2022. "Robust Distortion Risk Measures," Papers 2205.08850, arXiv.org, revised Mar 2023.
    4. Farkas, Walter & Fringuellotti, Fulvia & Tunaru, Radu, 2020. "A cost-benefit analysis of capital requirements adjusted for model risk," Journal of Corporate Finance, Elsevier, vol. 65(C).
    5. Schneider, Judith C. & Schweizer, Nikolaus, 2015. "Robust measurement of (heavy-tailed) risks: Theory and implementation," Journal of Economic Dynamics and Control, Elsevier, vol. 61(C), pages 183-203.
    6. Labopin-Richard T. & Gamboa F. & Garivier A. & Iooss B., 2016. "Bregman superquantiles. Estimation methods and applications," Dependence Modeling, De Gruyter, vol. 4(1), pages 1-33, March.
    7. Kim, Sojung & Weber, Stefan, 2022. "Simulation methods for robust risk assessment and the distorted mix approach," European Journal of Operational Research, Elsevier, vol. 298(1), pages 380-398.
    8. An Chen & Mitja Stadje & Fangyuan Zhang, 2020. "On the equivalence between Value-at-Risk- and Expected Shortfall-based risk measures in non-concave optimization," Papers 2002.02229, arXiv.org, revised Jun 2022.
    9. Fissler Tobias & Ziegel Johanna F., 2021. "On the elicitability of range value at risk," Statistics & Risk Modeling, De Gruyter, vol. 38(1-2), pages 25-46, January.
    10. Xu, Qifa & Chen, Lu & Jiang, Cuixia & Yu, Keming, 2020. "Mixed data sampling expectile regression with applications to measuring financial risk," Economic Modelling, Elsevier, vol. 91(C), pages 469-486.
    11. Liu, Peng & Wang, Ruodu & Wei, Linxiao, 2020. "Is the inf-convolution of law-invariant preferences law-invariant?," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 144-154.
    12. Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.
    13. Claußen, Arndt & Rösch, Daniel & Schmelzle, Martin, 2019. "Hedging parameter risk," Journal of Banking & Finance, Elsevier, vol. 100(C), pages 111-121.
    14. Bernard, Carole & Kazzi, Rodrigue & Vanduffel, Steven, 2020. "Range Value-at-Risk bounds for unimodal distributions under partial information," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 9-24.
    15. Enrique Molina‐Muñoz & Andrés Mora‐Valencia & Javier Perote, 2021. "Backtesting expected shortfall for world stock index ETFs with extreme value theory and Gram–Charlier mixtures," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4163-4189, July.
    16. Ruodu Wang & Yunran Wei & Gordon E. Willmot, 2020. "Characterization, Robustness, and Aggregation of Signed Choquet Integrals," Mathematics of Operations Research, INFORMS, vol. 45(3), pages 993-1015, August.
    17. Chen, Yuyu & Lin, Liyuan & Wang, Ruodu, 2022. "Risk aggregation under dependence uncertainty and an order constraint," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 169-187.
    18. Wei, Yunran & Zitikis, Ričardas, 2023. "Assessing the difference between integrated quantiles and integrated cumulative distribution functions," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 163-172.
    19. Yuyu Chen & Liyuan Lin & Ruodu Wang, 2021. "Risk Aggregation under Dependence Uncertainty and an Order Constraint," Papers 2104.07718, arXiv.org, revised Oct 2021.
    20. Baishuai Zuo & Chuancun Yin & Jing Yao, 2023. "Multivariate range Value-at-Risk and covariance risk measures for elliptical and log-elliptical distributions," Papers 2305.09097, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:7:y:2019:i:2:p:55-:d:231229. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.