A Novel Stochastic Copula Model for the Texas Energy Market
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Fred ESPEN Benth & Jurate saltyte Benth, 2007. "The volatility of temperature and pricing of weather derivatives," Quantitative Finance, Taylor & Francis Journals, vol. 7(5), pages 553-561.
- Aloui, Riadh & Aïssa, Mohamed Safouane Ben & Hammoudeh, Shawkat & Nguyen, Duc Khuong, 2014.
"Dependence and extreme dependence of crude oil and natural gas prices with applications to risk management,"
Energy Economics, Elsevier, vol. 42(C), pages 332-342.
- Riadh Aloui & Mohamed Safouane Ben Aïssa & Shawkat Hammoudeh & Duc Khuong Nguyen, 2014. "Dependence and extreme dependence of crude oil and natural gas prices with applications to risk management," Working Papers 2014-590, Department of Research, Ipag Business School.
- Jonathan Berrisch & Sven Pappert & Florian Ziel & Antonia Arsova, 2022. "Modeling Volatility and Dependence of European Carbon and Energy Prices," Papers 2208.14311, arXiv.org, revised Feb 2023.
- Yeny E. Rodríguez & Miguel A. Pérez-Uribe & Javier Contreras, 2021. "Wind Put Barrier Options Pricing Based on the Nordix Index," Energies, MDPI, vol. 14(4), pages 1-14, February.
- Nguyen, Hang T. & Nabney, Ian T., 2010. "Short-term electricity demand and gas price forecasts using wavelet transforms and adaptive models," Energy, Elsevier, vol. 35(9), pages 3674-3685.
- Coulon, Michael & Powell, Warren B. & Sircar, Ronnie, 2013. "A model for hedging load and price risk in the Texas electricity market," Energy Economics, Elsevier, vol. 40(C), pages 976-988.
- Berrisch, Jonathan & Pappert, Sven & Ziel, Florian & Arsova, Antonia, 2023. "Modeling volatility and dependence of European carbon and energy prices," Finance Research Letters, Elsevier, vol. 52(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yuji Yamada & Takuji Matsumoto, 2023. "Construction of Mixed Derivatives Strategy for Wind Power Producers," Energies, MDPI, vol. 16(9), pages 1-26, April.
- Filippos Ioannidis & Kyriaki Kosmidou & Panayiotis Theodossiou, 2025. "Spillovers Into the German Electricity Market From the Gas, Coal, and CO2 Emissions Markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 45(9), pages 1253-1277, September.
- Yang, Kun & Sun, Yuying & Hong, Yongmiao & Wang, Shouyang, 2024. "Forecasting interval carbon price through a multi-scale interval-valued decomposition ensemble approach," Energy Economics, Elsevier, vol. 139(C).
- Amaddeo, Elsa & Bergantino, Angela Stefania & Magazzino, Cosimo, 2025. "Who pays for the EU Emission Trading System? The risk of shifting tax burden from firm to final consumer," Energy Economics, Elsevier, vol. 143(C).
- Sikorska-Pastuszka, Magdalena & Papież, Monika, 2023. "Dynamic volatility connectedness in the European electricity market," Energy Economics, Elsevier, vol. 127(PA).
- Paul Ghelasi & Florian Ziel, 2024. "From day-ahead to mid and long-term horizons with econometric electricity price forecasting models," Papers 2406.00326, arXiv.org, revised Aug 2024.
- Živkov, Dejan & Kuzman, Boris & Japundžić, Miloš, 2025. "Using metals to hedge carbon emission allowances – Tail-risk and Omega ratio analysis," Resources Policy, Elsevier, vol. 100(C).
- Simon Hirsch & Florian Ziel, 2023. "Multivariate Simulation-based Forecasting for Intraday Power Markets: Modelling Cross-Product Price Effects," Papers 2306.13419, arXiv.org.
- Ghelasi, Paul & Ziel, Florian, 2025. "From day-ahead to mid and long-term horizons with econometric electricity price forecasting models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 217(C).
- Fernando Alves Silveira & Silvio Parodi de Oliveira Camilo, 2024. "A blockchain-based platform for trading weather derivatives," Digital Finance, Springer, vol. 6(1), pages 3-22, March.
- Maneejuk, Paravee & Huang, Wucaihong & Yamaka, Woraphon, 2025. "Asymmetric volatility spillover effects from energy, agriculture, green bond, and financial market uncertainty on carbon market during major market crisis," Energy Economics, Elsevier, vol. 145(C).
- Cagli, Efe Caglar & Taskin, Dilvin & Evrim Mandaci, Pınar, 2019. "The short- and long-run efficiency of energy, precious metals, and base metals markets: Evidence from the exponential smooth transition autoregressive models," Energy Economics, Elsevier, vol. 84(C).
- Daniel Poh & Stephen Roberts & Martin Tegn'er, 2019. "A Machine Learning approach to Risk Minimisation in Electricity Markets with Coregionalized Sparse Gaussian Processes," Papers 1903.09536, arXiv.org, revised Apr 2019.
- Ahmet Göncü, 2013. "Comparison of temperature models using heating and cooling degree days futures," Journal of Risk Finance, Emerald Group Publishing, vol. 14(2), pages 159-178, February.
- Rui Zhou & Johnny Siu-Hang Li & Jeffrey Pai, 2019. "Pricing temperature derivatives with a filtered historical simulation approach," The European Journal of Finance, Taylor & Francis Journals, vol. 25(15), pages 1462-1484, October.
- Pinto, T. & Morais, H. & Oliveira, P. & Vale, Z. & Praça, I. & Ramos, C., 2011. "A new approach for multi-agent coalition formation and management in the scope of electricity markets," Energy, Elsevier, vol. 36(8), pages 5004-5015.
- Jammazi, Rania, 2012.
"Oil shock transmission to stock market returns: Wavelet-multivariate Markov switching GARCH approach,"
Energy, Elsevier, vol. 37(1), pages 430-454.
- Rania Jammazi, 2014. "Oil Shock Transmission to Stock Market Returns: Wavelet Multivariate Markov Switching GARCH Approach," Working Papers 2014-197, Department of Research, Ipag Business School.
- Samuel Asante Gyamerah & Philip Ngare & Dennis Ikpe, 2018.
"Regime-Switching Temperature Dynamics Model for Weather Derivatives,"
International Journal of Stochastic Analysis, Hindawi, vol. 2018, pages 1-15, July.
- Samuel Asante Gyamerah & Philip Ngare & Dennis Ikpe, 2018. "Regime-Switching Temperature Dynamics Model for Weather Derivatives," Papers 1808.04710, arXiv.org.
- Dimitrios Mouchtaris & Emmanouil Sofianos & Periklis Gogas & Theophilos Papadimitriou, 2021. "Forecasting Natural Gas Spot Prices with Machine Learning," Energies, MDPI, vol. 14(18), pages 1-13, September.
- Hougaard, Jens Leth & Kronborg, Dorte & Smilgins, Aleksandrs, 2017. "Fair division of costs in green energy markets," Energy, Elsevier, vol. 139(C), pages 220-230.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:13:y:2025:i:7:p:137-:d:1702957. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/gam/jrisks/v13y2025i7p137-d1702957.html