IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v125y2017icp127-139.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Short term electricity price forecast based on environmentally adapted generalized neuron

Author

Listed:
  • Singh, Nitin
  • Mohanty, Soumya Ranjan
  • Dev Shukla, Rishabh

Abstract

The liberalization of the power markets gained a remarkable momentum in the context of trading electricity as a commodity. With the upsurge in restructuring of the power markets, electricity price plays a dominant role in the current deregulated market scenario which is majorly influenced by the economics being governed. In the deregulated environment price forecasting is an important aspect for the power system planning. The problem of price forecasting can be entirely viewed as a signal processing problem with proper estimation of model parameters, modeling of uncertainties, etc. Among the different existing models the artificial neural network based models have gained wide popularity due their black box structure but it too has its own limitations. In the proposed work in order to overcome the limitations of the classical artificial neural network model, generalized neuron model is used for forecasting the short term electricity price of Australian electricity market. The pre-processing of the input parameters is accomplished using wavelet transform for better representation of the low and high frequency components. The free parameters of the generalized neuron model are tuned using environment adaptation method algorithm for increasing the generalization ability and efficacy of the model.

Suggested Citation

  • Singh, Nitin & Mohanty, Soumya Ranjan & Dev Shukla, Rishabh, 2017. "Short term electricity price forecast based on environmentally adapted generalized neuron," Energy, Elsevier, vol. 125(C), pages 127-139.
  • Handle: RePEc:eee:energy:v:125:y:2017:i:c:p:127-139
    DOI: 10.1016/j.energy.2017.02.094
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217302761
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.02.094?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dowling, Alexander W. & Kumar, Ranjeet & Zavala, Victor M., 2017. "A multi-scale optimization framework for electricity market participation," Applied Energy, Elsevier, vol. 190(C), pages 147-164.
    2. Zhang, Wenbin & Tian, Lixin & Wang, Minggang & Zhen, Zaili & Fang, Guochang, 2016. "The evolution model of electricity market on the stable development in China and its dynamic analysis," Energy, Elsevier, vol. 114(C), pages 344-359.
    3. Lin, Whei-Min & Gow, Hong-Jey & Tsai, Ming-Tang, 2010. "An enhanced radial basis function network for short-term electricity price forecasting," Applied Energy, Elsevier, vol. 87(10), pages 3226-3234, October.
    4. Conejo, Antonio J. & Contreras, Javier & Espinola, Rosa & Plazas, Miguel A., 2005. "Forecasting electricity prices for a day-ahead pool-based electric energy market," International Journal of Forecasting, Elsevier, vol. 21(3), pages 435-462.
    5. Nguyen, Hang T. & Nabney, Ian T., 2010. "Short-term electricity demand and gas price forecasts using wavelet transforms and adaptive models," Energy, Elsevier, vol. 35(9), pages 3674-3685.
    6. Sheikholeslami, M. & Ganji, D.D., 2016. "Heat transfer enhancement in an air to water heat exchanger with discontinuous helical turbulators; experimental and numerical studies," Energy, Elsevier, vol. 116(P1), pages 341-352.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liyang Tang, 2020. "Application of Nonlinear Autoregressive with Exogenous Input (NARX) neural network in macroeconomic forecasting, national goal setting and global competitiveness assessment," Papers 2005.08735, arXiv.org.
    2. Claudio Monteiro & L. Alfredo Fernandez-Jimenez & Ignacio J. Ramirez-Rosado, 2015. "Explanatory Information Analysis for Day-Ahead Price Forecasting in the Iberian Electricity Market," Energies, MDPI, vol. 8(9), pages 1-23, September.
    3. Panapakidis, Ioannis P. & Dagoumas, Athanasios S., 2016. "Day-ahead electricity price forecasting via the application of artificial neural network based models," Applied Energy, Elsevier, vol. 172(C), pages 132-151.
    4. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    5. Yang, Zhang & Ce, Li & Lian, Li, 2017. "Electricity price forecasting by a hybrid model, combining wavelet transform, ARMA and kernel-based extreme learning machine methods," Applied Energy, Elsevier, vol. 190(C), pages 291-305.
    6. Halužan, Marko & Verbič, Miroslav & Zorić, Jelena, 2020. "Performance of alternative electricity price forecasting methods: Findings from the Greek and Hungarian power exchanges," Applied Energy, Elsevier, vol. 277(C).
    7. Khosravi, Abbas & Nahavandi, Saeid & Creighton, Doug, 2013. "Quantifying uncertainties of neural network-based electricity price forecasts," Applied Energy, Elsevier, vol. 112(C), pages 120-129.
    8. Elmore, Clay T. & Dowling, Alexander W., 2021. "Learning spatiotemporal dynamics in wholesale energy markets with dynamic mode decomposition," Energy, Elsevier, vol. 232(C).
    9. Javed, Fahad & Arshad, Naveed & Wallin, Fredrik & Vassileva, Iana & Dahlquist, Erik, 2012. "Forecasting for demand response in smart grids: An analysis on use of anthropologic and structural data and short term multiple loads forecasting," Applied Energy, Elsevier, vol. 96(C), pages 150-160.
    10. Palacio, Sebastián M., 2020. "Predicting collusive patterns in a liberalized electricity market with mandatory auctions of forward contracts," Energy Policy, Elsevier, vol. 139(C).
    11. Jesus Lago & Fjo De Ridder & Peter Vrancx & Bart De Schutter, 2017. "Forecasting day-ahead electricity prices in Europe: the importance of considering market integration," Papers 1708.07061, arXiv.org, revised Dec 2017.
    12. Lago, Jesus & De Ridder, Fjo & De Schutter, Bart, 2018. "Forecasting spot electricity prices: Deep learning approaches and empirical comparison of traditional algorithms," Applied Energy, Elsevier, vol. 221(C), pages 386-405.
    13. Jichun Liu & Yangfang Yang & Yue Xiang & Junyong Liu, 2019. "A Power Exchange Strategy for Multiple Areas with Hydro Power and Flexible Loads," Energies, MDPI, vol. 12(6), pages 1-17, March.
    14. Barrow, Devon & Kourentzes, Nikolaos, 2018. "The impact of special days in call arrivals forecasting: A neural network approach to modelling special days," European Journal of Operational Research, Elsevier, vol. 264(3), pages 967-977.
    15. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
    16. Diongue, Abdou Kâ & Guégan, Dominique & Vignal, Bertrand, 2009. "Forecasting electricity spot market prices with a k-factor GIGARCH process," Applied Energy, Elsevier, vol. 86(4), pages 505-510, April.
    17. Shao, Zhen & Zheng, Qingru & Yang, Shanlin & Gao, Fei & Cheng, Manli & Zhang, Qiang & Liu, Chen, 2020. "Modeling and forecasting the electricity clearing price: A novel BELM based pattern classification framework and a comparative analytic study on multi-layer BELM and LSTM," Energy Economics, Elsevier, vol. 86(C).
    18. Sinha, Pankaj & Mathur, Kritika, 2016. "Empirical Analysis of Developments in the Day Ahead Electricity Markets in India," MPRA Paper 72969, University Library of Munich, Germany.
    19. Billé, Anna Gloria & Gianfreda, Angelica & Del Grosso, Filippo & Ravazzolo, Francesco, 2023. "Forecasting electricity prices with expert, linear, and nonlinear models," International Journal of Forecasting, Elsevier, vol. 39(2), pages 570-586.
    20. Xiao, Liye & Shao, Wei & Liang, Tulu & Wang, Chen, 2016. "A combined model based on multiple seasonal patterns and modified firefly algorithm for electrical load forecasting," Applied Energy, Elsevier, vol. 167(C), pages 135-153.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:125:y:2017:i:c:p:127-139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.