IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v9y2020i11p133-d446952.html
   My bibliography  Save this article

Unlocking the Energy Recovery Potential from Sustainable Management of Bio-Resources Based on GIS Analysis: Case Study in Hanoi, Vietnam

Author

Listed:
  • Khue Minh Dao

    (Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan)

  • Helmut Yabar

    (Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan)

  • Takeshi Mizunoya

    (Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan)

Abstract

Pig production has greatly contributed to economic development in Vietnam. However, the lack of appropriate management of large amounts of pig manure has caused serious adverse environmental impacts including GHG emissions. To address this challenge, this study explored the potential of biogas production from manure in Hanoi. Through the use of GIS suitability analysis, cluster analysis, and the analytic hierarchy process (AHP) technique, the study first analyzed the spatial distribution of pig farms, identified optimal locations for biogas plants, and evaluated potential benefits of introducing biogas production to satisfy the electricity demand and reduce GHG emissions. The results show that it is possible to optimally install two biogas plants with a capacity of more than 1 MW and three with a capacity of more than 250 kW, meeting 1.75% and 0.76% of the electricity demand of Son Tay and Thach That respectively. The study estimated that the implementation of the three proposed scenarios would reduce GHG emissions by 84,777 tons of CO 2 eq/year compared to the current situation or baseline scenario. The results open a great opportunity to address local energy security with renewable energy and reduce GHG emissions effectively.

Suggested Citation

  • Khue Minh Dao & Helmut Yabar & Takeshi Mizunoya, 2020. "Unlocking the Energy Recovery Potential from Sustainable Management of Bio-Resources Based on GIS Analysis: Case Study in Hanoi, Vietnam," Resources, MDPI, vol. 9(11), pages 1-24, November.
  • Handle: RePEc:gam:jresou:v:9:y:2020:i:11:p:133-:d:446952
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/9/11/133/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/9/11/133/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Höhn, J. & Lehtonen, E. & Rasi, S. & Rintala, J., 2014. "A Geographical Information System (GIS) based methodology for determination of potential biomasses and sites for biogas plants in southern Finland," Applied Energy, Elsevier, vol. 113(C), pages 1-10.
    2. Tin Hong Nguyen, 2017. "An Overview of Agricultural Pollution in Vietnam," World Bank Publications - Reports 29241, The World Bank Group.
    3. Sorda, G. & Sunak, Y. & Madlener, R., 2013. "An agent-based spatial simulation to evaluate the promotion of electricity from agricultural biogas plants in Germany," Ecological Economics, Elsevier, vol. 89(C), pages 43-60.
    4. Valenti, Francesca & Porto, Simona M.C. & Dale, Bruce E. & Liao, Wei, 2018. "Spatial analysis of feedstock supply and logistics to establish regional biogas power generation: A case study in the region of Sicily," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 50-63.
    5. Alami Merrouni, Ahmed & Elwali Elalaoui, Fakhreddine & Mezrhab, Ahmed & Mezrhab, Abdelhamid & Ghennioui, Abdellatif, 2018. "Large scale PV sites selection by combining GIS and Analytical Hierarchy Process. Case study: Eastern Morocco," Renewable Energy, Elsevier, vol. 119(C), pages 863-873.
    6. Tung Xuan Dinh, 2017. "An Overview of Agricultural Pollution in Vietnam," World Bank Publications - Reports 29244, The World Bank Group.
    7. Thompson, Ethan & Wang, Qingbin & Li, Minghao, 2013. "Anaerobic digester systems (ADS) for multiple dairy farms: A GIS analysis for optimal site selection," Energy Policy, Elsevier, vol. 61(C), pages 114-124.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sultana Sharmin & Helmut Yabar & Delmaria Richards, 2023. "Green Energy Optimization in Dinajpur, Bangladesh: A Path to Net Neutrality," Sustainability, MDPI, vol. 15(2), pages 1-29, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soha, Tamás & Papp, Luca & Csontos, Csaba & Munkácsy, Béla, 2021. "The importance of high crop residue demand on biogas plant site selection, scaling and feedstock allocation – A regional scale concept in a Hungarian study area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    2. Tran, Thi Xuyen, 2021. "Typhoon and Agricultural Production Portfolio -Empirical Evidence for a Developing Economy," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242411, Verein für Socialpolitik / German Economic Association.
    3. Seyed Hashem Mousavi-Avval & Sami Khanal & Ajay Shah, 2023. "Assessment of Potential Pennycress Availability and Suitable Sites for Sustainable Aviation Fuel Refineries in Ohio," Sustainability, MDPI, vol. 15(13), pages 1-14, July.
    4. Murray, Alan T., 2021. "Contemporary optimization application through geographic information systems," Omega, Elsevier, vol. 99(C).
    5. Tomaž Levstek & Črtomir Rozman, 2022. "A Model for Finding a Suitable Location for a Micro Biogas Plant Using Gis Tools," Energies, MDPI, vol. 15(20), pages 1-21, October.
    6. Costa, Fabrício Rodrigues & Ribeiro, Carlos Antonio Alvares Soares & Marcatti, Gustavo Eduardo & Lorenzon, Alexandre Simões & Teixeira, Thaisa Ribeiro & Domingues, Getulio Fonseca & Castro, Nero Lemos, 2020. "GIS applied to location of bioenergy plants in tropical agricultural areas," Renewable Energy, Elsevier, vol. 153(C), pages 911-918.
    7. Tran, Thi Xuyen, 2021. "Typhoon and Agricultural Production Portfolio Empirical Evidence for a Developing Economy," Working Paper 188/2021, Helmut Schmidt University, Hamburg.
    8. Scarlat, Nicolae & Fahl, Fernando & Dallemand, Jean-François & Monforti, Fabio & Motola, Vicenzo, 2018. "A spatial analysis of biogas potential from manure in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 915-930.
    9. Danijel Topić & Marinko Barukčić & Dražen Mandžukić & Cecilia Mezei, 2020. "Optimization Model for Biogas Power Plant Feedstock Mixture Considering Feedstock and Transportation Costs Using a Differential Evolution Algorithm," Energies, MDPI, vol. 13(7), pages 1-22, April.
    10. Lovrak, Ana & Pukšec, Tomislav & Duić, Neven, 2020. "A Geographical Information System (GIS) based approach for assessing the spatial distribution and seasonal variation of biogas production potential from agricultural residues and municipal biowaste," Applied Energy, Elsevier, vol. 267(C).
    11. Diego Díaz-Vázquez & Susan Caroline Alvarado-Cummings & Demetrio Meza-Rodríguez & Carolina Senés-Guerrero & José de Anda & Misael Sebastián Gradilla-Hernández, 2020. "Evaluation of Biogas Potential from Livestock Manures and Multicriteria Site Selection for Centralized Anaerobic Digester Systems: The Case of Jalisco, México," Sustainability, MDPI, vol. 12(9), pages 1-32, April.
    12. Lozano-García, Diego Fabián & Santibañez-Aguilar, José Ezequiel & Lozano, Francisco J. & Flores-Tlacuahuac, Antonio, 2020. "GIS-based modeling of residual biomass availability for energy and production in Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    13. Kolb, Sebastian & Plankenbühler, Thomas & Frank, Jonas & Dettelbacher, Johannes & Ludwig, Ralf & Karl, Jürgen & Dillig, Marius, 2021. "Scenarios for the integration of renewable gases into the German natural gas market – A simulation-based optimisation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    14. Brahma, Antara & Saikia, Kangkana & Hiloidhari, Moonmoon & Baruah, D.C., 2016. "GIS based planning of a biomethanation power plant in Assam, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 596-608.
    15. Sahoo, Somadutta & Zuidema, Christian & van Stralen, Joost N.P. & Sijm, Jos & Faaij, André, 2022. "Detailed spatial analysis of renewables’ potential and heat: A study of Groningen Province in the northern Netherlands," Applied Energy, Elsevier, vol. 318(C).
    16. Sward, Jeffrey A. & Nilson, Roberta S. & Katkar, Venktesh V. & Stedman, Richard C. & Kay, David L. & Ifft, Jennifer E. & Zhang, K. Max, 2021. "Integrating social considerations in multicriteria decision analysis for utility-scale solar photovoltaic siting," Applied Energy, Elsevier, vol. 288(C).
    17. Wu, Bingqing & Sarker, Bhaba R. & Paudel, Krishna P., 2015. "Sustainable energy from biomass: Biomethane manufacturing plant location and distribution problem," Applied Energy, Elsevier, vol. 158(C), pages 597-608.
    18. O’Shea, Richard & Kilgallon, Ian & Wall, David & Murphy, Jerry D., 2016. "Quantification and location of a renewable gas industry based on digestion of wastes in Ireland," Applied Energy, Elsevier, vol. 175(C), pages 229-239.
    19. Shang, Linmei & Heckelei, Thomas & Gerullis, Maria K. & Börner, Jan & Rasch, Sebastian, 2021. "Adoption and diffusion of digital farming technologies - integrating farm-level evidence and system interaction," Agricultural Systems, Elsevier, vol. 190(C).
    20. Jung, Seunghoon & Jeoung, Jaewon & Kang, Hyuna & Hong, Taehoon, 2021. "Optimal planning of a rooftop PV system using GIS-based reinforcement learning," Applied Energy, Elsevier, vol. 298(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:9:y:2020:i:11:p:133-:d:446952. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.