IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i6p686-d522358.html
   My bibliography  Save this article

Solving Regression Problems with Intelligent Machine Learner for Engineering Informatics

Author

Listed:
  • Jui-Sheng Chou

    (Department of Civil and Construction Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan)

  • Dinh-Nhat Truong

    (Department of Civil and Construction Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan
    Department of Civil Engineering, University of Architecture Ho Chi Minh City (UAH), Ho Chi Minh City 700000, Vietnam)

  • Chih-Fong Tsai

    (Department of Information Management, National Central University, Taoyuan City 320317, Taiwan)

Abstract

Machine learning techniques have been used to develop many regression models to make predictions based on experience and historical data. They might be used singly or in ensembles. Single models are either classification or regression models that use one technique, while ensemble models combine various single models. To construct or find the best model is very complex and time-consuming, so this study develops a new platform, called intelligent Machine Learner (iML), to automatically build popular models and identify the best one. The iML platform is benchmarked with WEKA by analyzing publicly available datasets. After that, four industrial experiments are conducted to evaluate the performance of iML. In all cases, the best models determined by iML are superior to prior studies in terms of accuracy and computation time. Thus, the iML is a powerful and efficient tool for solving regression problems in engineering informatics.

Suggested Citation

  • Jui-Sheng Chou & Dinh-Nhat Truong & Chih-Fong Tsai, 2021. "Solving Regression Problems with Intelligent Machine Learner for Engineering Informatics," Mathematics, MDPI, vol. 9(6), pages 1-25, March.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:6:p:686-:d:522358
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/6/686/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/6/686/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ganesan, P. & Rajakarunakaran, S. & Thirugnanasambandam, M. & Devaraj, D., 2015. "Artificial neural network model to predict the diesel electric generator performance and exhaust emissions," Energy, Elsevier, vol. 83(C), pages 115-124.
    2. David H. Wolpert & William G. Macready, 1995. "No Free Lunch Theorems for Search," Working Papers 95-02-010, Santa Fe Institute.
    3. Caputo, Antonio C. & Pelagagge, Pacifico M., 2008. "Parametric and neural methods for cost estimation of process vessels," International Journal of Production Economics, Elsevier, vol. 112(2), pages 934-954, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Florin Leon & Mircea Hulea & Marius Gavrilescu, 2022. "Preface to the Special Issue on “Advances in Artificial Intelligence: Models, Optimization, and Machine Learning”," Mathematics, MDPI, vol. 10(10), pages 1-4, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Changfeng & Zhi, Jiaqi & Yao, Xiao & Zhang, Hong & Yu, Yue & Zeng, Qingshun & Li, Luji & Zhang, Yuxi, 2023. "How can China achieve the 2030 carbon peak goal—a crossover analysis based on low-carbon economics and deep learning," Energy, Elsevier, vol. 269(C).
    2. Johnson, Michael D. & Kirchain, Randolph E., 2009. "Quantifying the effects of product family decisions on material selection: A process-based costing approach," International Journal of Production Economics, Elsevier, vol. 120(2), pages 653-668, August.
    3. Sevvandi Kandanaarachchi & Mario A Munoz & Rob J Hyndman & Kate Smith-Miles, 2018. "On normalization and algorithm selection for unsupervised outlier detection," Monash Econometrics and Business Statistics Working Papers 16/18, Monash University, Department of Econometrics and Business Statistics.
    4. Aydın, Hüseyin, 2021. "An innovative research on variable compression ratio in RCCI strategy on a power generator diesel engine using CNG-safflower biodiesel," Energy, Elsevier, vol. 231(C).
    5. Kamran Zolfi, 2023. "Gold rush optimizer: A new population-based metaheuristic algorithm," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 33(1), pages 113-150.
    6. William G. Macready & David H. Wolpert, 1995. "What Makes an Optimization Problem Hard?," Working Papers 95-05-046, Santa Fe Institute.
    7. Y.C. Ho & D.L. Pepyne, 2002. "Simple Explanation of the No-Free-Lunch Theorem and Its Implications," Journal of Optimization Theory and Applications, Springer, vol. 115(3), pages 549-570, December.
    8. Murtadha Al-Kaabi & Virgil Dumbrava & Mircea Eremia, 2022. "A Slime Mould Algorithm Programming for Solving Single and Multi-Objective Optimal Power Flow Problems with Pareto Front Approach: A Case Study of the Iraqi Super Grid High Voltage," Energies, MDPI, vol. 15(20), pages 1-33, October.
    9. Galioto, Francesco & Battilani, Adriano, 2021. "Agro-economic simulation for day by day irrigation scheduling optimisation," Agricultural Water Management, Elsevier, vol. 248(C).
    10. Abdel-Rahman Hedar & Emad Mabrouk & Masao Fukushima, 2011. "Tabu Programming: A New Problem Solver Through Adaptive Memory Programming Over Tree Data Structures," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 10(02), pages 373-406.
    11. Agarwal, Anurag & Colak, Selcuk & Eryarsoy, Enes, 2006. "Improvement heuristic for the flow-shop scheduling problem: An adaptive-learning approach," European Journal of Operational Research, Elsevier, vol. 169(3), pages 801-815, March.
    12. Murtadha Al-Kaabi & Virgil Dumbrava & Mircea Eremia, 2022. "Single and Multi-Objective Optimal Power Flow Based on Hunger Games Search with Pareto Concept Optimization," Energies, MDPI, vol. 15(22), pages 1-31, November.
    13. Muangkote, Nipotepat & Sunat, Khamron & Chiewchanwattana, Sirapat & Kaiwinit, Sirilak, 2019. "An advanced onlooker-ranking-based adaptive differential evolution to extract the parameters of solar cell models," Renewable Energy, Elsevier, vol. 134(C), pages 1129-1147.
    14. Xiong, Xin & Hu, Xi & Guo, Huan, 2021. "A hybrid optimized grey seasonal variation index model improved by whale optimization algorithm for forecasting the residential electricity consumption," Energy, Elsevier, vol. 234(C).
    15. William G. Macready & David H. Wolpert, 1996. "On 2-Armed Gaussian Bandits and Optimization," Working Papers 96-03-009, Santa Fe Institute.
    16. Sharifian, Yeganeh & Abdi, Hamdi, 2023. "Solving multi-area economic dispatch problem using hybrid exchange market algorithm with grasshopper optimization algorithm," Energy, Elsevier, vol. 267(C).
    17. Mason, Karl & Duggan, Jim & Howley, Enda, 2018. "Forecasting energy demand, wind generation and carbon dioxide emissions in Ireland using evolutionary neural networks," Energy, Elsevier, vol. 155(C), pages 705-720.
    18. Díaz–Pachón, Daniel Andrés & Sáenz, Juan Pablo & Rao, J. Sunil, 2020. "Hypothesis testing with active information," Statistics & Probability Letters, Elsevier, vol. 161(C).
    19. Zheng, Shenglin & Yuan, Rong, 2023. "Sectoral convergence analysis of China's emissions intensity and its implications," Energy, Elsevier, vol. 262(PB).
    20. Chou, Jui-Sheng & Tai, Yian & Chang, Lian-Ji, 2010. "Predicting the development cost of TFT-LCD manufacturing equipment with artificial intelligence models," International Journal of Production Economics, Elsevier, vol. 128(1), pages 339-350, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:6:p:686-:d:522358. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.