IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i17p2084-d624462.html
   My bibliography  Save this article

Analysis of Fractional-Order Nonlinear Dynamic Systems with General Analytic Kernels: Lyapunov Stability and Inequalities

Author

Listed:
  • Oscar Martínez-Fuentes

    (School of Engineering, Universidad Anáhuac Veracruz, Campus Xalapa, Circuito Arco Sur s/n, Col. Lomas Verdes, Xalapa 91098, Mexico
    These authors contributed equally to this work.)

  • Fidel Meléndez-Vázquez

    (Departamento de Física y Matemáticas, Universidad Iberoamericana Ciudad de México, Prol. Paseo de la Reforma 880, Lomas de Santa Fe, Alvaro Obregon, Mexico City 01219, Mexico
    These authors contributed equally to this work.)

  • Guillermo Fernández-Anaya

    (Departamento de Física y Matemáticas, Universidad Iberoamericana Ciudad de México, Prol. Paseo de la Reforma 880, Lomas de Santa Fe, Alvaro Obregon, Mexico City 01219, Mexico
    These authors contributed equally to this work.)

  • José Francisco Gómez-Aguilar

    (CONACyT-Tecnológico Nacional de México/CENIDET, Interior Internado Palmira s/n, Col. Palmira, Cuernavaca 62490, Mexico
    These authors contributed equally to this work.)

Abstract

In this paper, we study the recently proposed fractional-order operators with general analytic kernels. The kernel of these operators is a locally uniformly convergent power series that can be chosen adequately to obtain a family of fractional operators and, in particular, the main existing fractional derivatives. Based on the conditions for the Laplace transform of these operators, in this paper, some new results are obtained—for example, relationships between Riemann–Liouville and Caputo derivatives and inverse operators. Later, employing a representation for the product of two functions, we determine a form of calculating its fractional derivative; this result is essential due to its connection to the fractional derivative of Lyapunov functions. In addition, some other new results are developed, leading to Lyapunov-like theorems and a Lyapunov direct method that serves to prove asymptotic stability in the sense of the operators with general analytic kernels. The FOB-stability concept is introduced, which generalizes the classical Mittag–Leffler stability for a wide class of systems. Some inequalities are established for operators with general analytic kernels, which generalize others in the literature. Finally, some new stability results via convex Lyapunov functions are presented, whose importance lies in avoiding the calculation of fractional derivatives for the stability analysis of dynamical systems. Some illustrative examples are given.

Suggested Citation

  • Oscar Martínez-Fuentes & Fidel Meléndez-Vázquez & Guillermo Fernández-Anaya & José Francisco Gómez-Aguilar, 2021. "Analysis of Fractional-Order Nonlinear Dynamic Systems with General Analytic Kernels: Lyapunov Stability and Inequalities," Mathematics, MDPI, vol. 9(17), pages 1-29, August.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:17:p:2084-:d:624462
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/17/2084/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/17/2084/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shaikh, Amjad S. & Sooppy Nisar, Kottakkaran, 2019. "Transmission dynamics of fractional order Typhoid fever model using Caputo–Fabrizio operator," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 355-365.
    2. Yadav, Swati & Pandey, Rajesh K., 2020. "Numerical approximation of fractional burgers equation with Atangana–Baleanu derivative in Caputo sense," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    3. Restrepo, Joel E. & Ruzhansky, Michael & Suragan, Durvudkhan, 2021. "Explicit solutions for linear variable–coefficient fractional differential equations with respect to functions," Applied Mathematics and Computation, Elsevier, vol. 403(C).
    4. Dumitru Baleanu & Arran Fernandez, 2019. "On Fractional Operators and Their Classifications," Mathematics, MDPI, vol. 7(9), pages 1-10, September.
    5. Ali, Farhad & Ali, Farman & Sheikh, Nadeem Ahmad & Khan, Ilyas & Nisar, Kottakkaran Sooppy, 2020. "Caputo–Fabrizio fractional derivatives modeling of transient MHD Brinkman nanoliquid: Applications in food technology," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    6. Kumar, Ashish & Pandey, Dwijendra N., 2020. "Existence of mild solution of Atangana–Baleanu fractional differential equations with non-instantaneous impulses and with non-local conditions," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    7. Sadeghi, S. & Jafari, H. & Nemati, S., 2020. "Operational matrix for Atangana–Baleanu derivative based on Genocchi polynomials for solving FDEs," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    8. Fernandez, Arran & Özarslan, Mehmet Ali & Baleanu, Dumitru, 2019. "On fractional calculus with general analytic kernels," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 248-265.
    9. Rudolf Hilfer & Yuri Luchko, 2019. "Desiderata for Fractional Derivatives and Integrals," Mathematics, MDPI, vol. 7(2), pages 1-5, February.
    10. Ren, Jing & Zhai, Chengbo, 2020. "Stability analysis for generalized fractional differential systems and applications," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    11. Baleanu, Dumitru & Jajarmi, Amin & Mohammadi, Hakimeh & Rezapour, Shahram, 2020. "A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    12. Wei, Qing & Zhou, Hongwei & Yang, Shuai, 2020. "Non-Darcy flow models in porous media via Atangana-Baleanu derivative," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    13. Taneco-Hernández, Marco Antonio & Vargas-De-León, Cruz, 2020. "Stability and Lyapunov functions for systems with Atangana–Baleanu Caputo derivative: An HIV/AIDS epidemic model," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    14. Zheng, Xiangcheng & Wang, Hong & Fu, Hongfei, 2020. "Well-posedness of fractional differential equations with variable-order Caputo-Fabrizio derivative," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    15. Al-Refai, Mohammed & Jarrah, Abdulla M., 2019. "Fundamental results on weighted Caputo–Fabrizio fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 7-11.
    16. Owolabi, Kolade M. & Atangana, Abdon, 2017. "Numerical approximation of nonlinear fractional parabolic differential equations with Caputo–Fabrizio derivative in Riemann–Liouville sense," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 171-179.
    17. Hari M. Srivastava & Arran Fernandez & Dumitru Baleanu, 2019. "Some New Fractional-Calculus Connections between Mittag–Leffler Functions," Mathematics, MDPI, vol. 7(6), pages 1-10, May.
    18. Edmundo Capelas de Oliveira & José António Tenreiro Machado, 2014. "A Review of Definitions for Fractional Derivatives and Integral," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-6, June.
    19. Dadras, Sara & Momeni, Hamid Reza, 2010. "Control of a fractional-order economical system via sliding mode," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(12), pages 2434-2442.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Isah, Sunday Simon & Fernandez, Arran & Özarslan, Mehmet Ali, 2023. "On bivariate fractional calculus with general univariate analytic kernels," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    2. Rahaman, Mostafijur & Mondal, Sankar Prasad & Alam, Shariful & Metwally, Ahmed Sayed M. & Salahshour, Soheil & Salimi, Mehdi & Ahmadian, Ali, 2022. "Manifestation of interval uncertainties for fractional differential equations under conformable derivative," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    3. Chaudhary, Naveed Ishtiaq & Raja, Muhammad Asif Zahoor & Khan, Zeshan Aslam & Mehmood, Ammara & Shah, Syed Muslim, 2022. "Design of fractional hierarchical gradient descent algorithm for parameter estimation of nonlinear control autoregressive systems," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    4. Shiri, Babak & Baleanu, Dumitru, 2023. "All linear fractional derivatives with power functions’ convolution kernel and interpolation properties," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    5. Kumar, Sunil & Chauhan, R.P. & Momani, Shaher & Hadid, Samir, 2021. "A study of fractional TB model due to mycobacterium tuberculosis bacteria," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    6. Aneesh S. Deogan & Roeland Dilz & Diego Caratelli, 2024. "On the Application of Fractional Derivative Operator Theory to the Electromagnetic Modeling of Frequency Dispersive Media," Mathematics, MDPI, vol. 12(7), pages 1-17, March.
    7. Christopher Nicholas Angstmann & Byron Alexander Jacobs & Bruce Ian Henry & Zhuang Xu, 2020. "Intrinsic Discontinuities in Solutions of Evolution Equations Involving Fractional Caputo–Fabrizio and Atangana–Baleanu Operators," Mathematics, MDPI, vol. 8(11), pages 1-16, November.
    8. Abdullahi, Auwal, 2021. "Modelling of transmission and control of Lassa fever via Caputo fractional-order derivative," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    9. Omame, Andrew & Abbas, Mujahid & Abdel-Aty, Abdel-Haleem, 2022. "Assessing the impact of SARS-CoV-2 infection on the dynamics of dengue and HIV via fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    10. Dumitru Baleanu & Arran Fernandez, 2019. "On Fractional Operators and Their Classifications," Mathematics, MDPI, vol. 7(9), pages 1-10, September.
    11. Dumitru Baleanu & Arran Fernandez & Ali Akgül, 2020. "On a Fractional Operator Combining Proportional and Classical Differintegrals," Mathematics, MDPI, vol. 8(3), pages 1-13, March.
    12. Fahad, Hafiz Muhammad & Fernandez, Arran, 2021. "Operational calculus for Caputo fractional calculus with respect to functions and the associated fractional differential equations," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    13. Kucche, Kishor D. & Mali, Ashwini D. & Fernandez, Arran & Fahad, Hafiz Muhammad, 2022. "On tempered Hilfer fractional derivatives with respect to functions and the associated fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    14. Kritika, & Agarwal, Ritu & Purohit, Sunil Dutt, 2020. "Mathematical model for anomalous subdiffusion using comformable operator," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    15. Fawaz E. Alsaadi & Amirreza Yasami & Christos Volos & Stelios Bekiros & Hadi Jahanshahi, 2023. "A New Fuzzy Reinforcement Learning Method for Effective Chemotherapy," Mathematics, MDPI, vol. 11(2), pages 1-25, January.
    16. F. Ghanim & Hiba F. Al-Janaby & Marwan Al-Momani & Belal Batiha, 2022. "Geometric Studies on Mittag-Leffler Type Function Involving a New Integrodifferential Operator," Mathematics, MDPI, vol. 10(18), pages 1-10, September.
    17. Yuri Luchko, 2022. "Fractional Differential Equations with the General Fractional Derivatives of Arbitrary Order in the Riemann–Liouville Sense," Mathematics, MDPI, vol. 10(6), pages 1-24, March.
    18. Hajipour, Ahamad & Hajipour, Mojtaba & Baleanu, Dumitru, 2018. "On the adaptive sliding mode controller for a hyperchaotic fractional-order financial system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 139-153.
    19. Ullah, Ihsan & Ahmad, Saeed & Rahman, Mati ur & Arfan, Muhammad, 2021. "Investigation of fractional order tuberculosis (TB) model via Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    20. Fernandez, Arran & Restrepo, Joel E. & Suragan, Durvudkhan, 2022. "On linear fractional differential equations with variable coefficients," Applied Mathematics and Computation, Elsevier, vol. 432(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:17:p:2084-:d:624462. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.