IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i16p2656-d1727098.html
   My bibliography  Save this article

Existence, Stability, and Numerical Methods for Multi-Fractional Integro-Differential Equations with Singular Kernel

Author

Listed:
  • Pratibha Verma

    (Institute of Structural Analysis, Poznan University of Technology, Piotrowo 5 Street, 60-965 Poznan, Poland)

  • Wojciech Sumelka

    (Institute of Structural Analysis, Poznan University of Technology, Piotrowo 5 Street, 60-965 Poznan, Poland)

Abstract

This work investigates the solutions of fractional integro-differential equations (FIDEs) using a unique kernel operator within the Caputo framework. The problem is addressed using both analytical and numerical techniques. First, the two-step Adomian decomposition method (TSADM) is applied to obtain an exact solution (if it exists). In the second part, numerical methods are used to generate approximate solutions, complementing the analytical approach based on the Adomian decomposition method (ADM), which is further extended using the Sumudu and Shehu transform techniques in cases where TSADM fails to yield an exact solution. Additionally, we establish the existence and uniqueness of the solution via fixed-point theorems. Furthermore, the Ulam–Hyers stability of the solution is analyzed. A detailed error analysis is performed to assess the precision and performance of the developed approaches. The results are demonstrated through validated examples, supported by comparative graphs and detailed error norm tables ( L ∞ , L 2 , and L 1 ). The graphical and tabular comparisons indicate that the Sumudu-Adomian decomposition method (Sumudu-ADM) and the Shehu-Adomian decomposition method (Shehu-ADM) approaches provide highly accurate approximations, with Shehu-ADM often delivering enhanced performance due to its weighted formulation. The suggested approach is simple and effective, often producing accurate estimates in a few iterations. Compared to conventional numerical and analytical techniques, the presented methods are computationally less intensive and more adaptable to a broad class of fractional-order differential equations encountered in scientific applications. The adopted methods offer high accuracy, low computational cost, and strong adaptability, with potential for extension to variable-order fractional models. They are suitable for a wide range of complex systems exhibiting evolving memory behavior.

Suggested Citation

  • Pratibha Verma & Wojciech Sumelka, 2025. "Existence, Stability, and Numerical Methods for Multi-Fractional Integro-Differential Equations with Singular Kernel," Mathematics, MDPI, vol. 13(16), pages 1-38, August.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:16:p:2656-:d:1727098
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/16/2656/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/16/2656/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A. A. Hemeda, 2014. "Modified Homotopy Perturbation Method for Solving Fractional Differential Equations," Journal of Applied Mathematics, John Wiley & Sons, vol. 2014(1).
    2. Muhammad Imran Liaqat & Adnan Khan & Md. Ashraful Alam & M. K. Pandit & Sina Etemad & Shahram Rezapour & Aida Mustapha, 2022. "Approximate and Closed-Form Solutions of Newell-Whitehead-Segel Equations via Modified Conformable Shehu Transform Decomposition Method," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-14, April.
    3. Heydari, M.H. & Razzaghi, M., 2024. "A new wavelet method for fractional integro-differential equations with ψ-Caputo fractional derivative," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 217(C), pages 97-108.
    4. Meng, Zhijun & Yi, Mingxu & Huang, Jun & Song, Lei, 2018. "Numerical solutions of nonlinear fractional differential equations by alternative Legendre polynomials," Applied Mathematics and Computation, Elsevier, vol. 336(C), pages 454-464.
    5. Xin Cai & Yihong Wang, 2024. "A Novel Fourth-Order Finite Difference Scheme for European Option Pricing in the Time-Fractional Black–Scholes Model," Mathematics, MDPI, vol. 12(21), pages 1-23, October.
    6. Hicham Ait Mohammed & Safa M. Mirgani & Brahim Tellab & Abdelkader Amara & Mohammed El-Hadi Mezabia & Khaled Zennir & Keltoum Bouhali, 2025. "Hyers–Ulam Stability Results of Solutions for a Multi-Point φ -Riemann-Liouville Fractional Boundary Value Problem," Mathematics, MDPI, vol. 13(9), pages 1-25, April.
    7. Baleanu, Dumitru & Jajarmi, Amin & Mohammadi, Hakimeh & Rezapour, Shahram, 2020. "A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    8. A. A. Hemeda, 2014. "Modified Homotopy Perturbation Method for Solving Fractional Differential Equations," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-9, November.
    9. Ahmad, Shabir & Ullah, Aman & Al-Mdallal, Qasem M. & Khan, Hasib & Shah, Kamal & Khan, Aziz, 2020. "Fractional order mathematical modeling of COVID-19 transmission," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    10. Masti, I. & Sayevand, K., 2024. "On collocation-Galerkin method and fractional B-spline functions for a class of stochastic fractional integro-differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 216(C), pages 263-287.
    11. Atanacković, Teodor M. & Janev, Marko & Pilipović, Stevan, 2018. "Non-linear boundary value problems involving Caputo derivatives of complex fractional order," Applied Mathematics and Computation, Elsevier, vol. 334(C), pages 326-342.
    12. Yuhui Yang & Yubin Yan, 2025. "A Fractional Adams Method for Caputo Fractional Differential Equations with Modified Graded Meshes," Mathematics, MDPI, vol. 13(5), pages 1-34, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liaqat, Muhammad Imran & Akgül, Ali, 2022. "A novel approach for solving linear and nonlinear time-fractional Schrödinger equations," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    2. Kritika, & Agarwal, Ritu & Purohit, Sunil Dutt, 2020. "Mathematical model for anomalous subdiffusion using comformable operator," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    3. Wang, Lei & Chen, Yi-Ming, 2020. "Shifted-Chebyshev-polynomial-based numerical algorithm for fractional order polymer visco-elastic rotating beam," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    4. Fawaz E. Alsaadi & Amirreza Yasami & Christos Volos & Stelios Bekiros & Hadi Jahanshahi, 2023. "A New Fuzzy Reinforcement Learning Method for Effective Chemotherapy," Mathematics, MDPI, vol. 11(2), pages 1-25, January.
    5. Ullah, Ihsan & Ahmad, Saeed & Rahman, Mati ur & Arfan, Muhammad, 2021. "Investigation of fractional order tuberculosis (TB) model via Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    6. Chimmula, Vinay Kumar Reddy & Zhang, Lei, 2020. "Time series forecasting of COVID-19 transmission in Canada using LSTM networks," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    7. Mahmoud, Emad E. & Trikha, Pushali & Jahanzaib, Lone Seth & Almaghrabi, Omar A., 2020. "Dynamical analysis and chaos control of the fractional chaotic ecological model," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    8. Etemad, Sina & Avci, Ibrahim & Kumar, Pushpendra & Baleanu, Dumitru & Rezapour, Shahram, 2022. "Some novel mathematical analysis on the fractal–fractional model of the AH1N1/09 virus and its generalized Caputo-type version," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    9. Khan, Hasib & Alam, Khurshaid & Gulzar, Haseena & Etemad, Sina & Rezapour, Shahram, 2022. "A case study of fractal-fractional tuberculosis model in China: Existence and stability theories along with numerical simulations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 455-473.
    10. Hussain, Ghulam & Khan, Amir & Zahri, Mostafa & Zaman, Gul, 2022. "Ergodic stationary distribution of stochastic epidemic model for HBV with double saturated incidence rates and vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    11. Alam, Mehboob & Zada, Akbar, 2022. "Implementation of q-calculus on q-integro-differential equation involving anti-periodic boundary conditions with three criteria," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    12. Yahya Almalki & Waqar Afzal, 2023. "Some New Estimates of Hermite–Hadamard Inequalities for Harmonical cr - h -Convex Functions via Generalized Fractional Integral Operator on Set-Valued Mappings," Mathematics, MDPI, vol. 11(19), pages 1-21, September.
    13. Hari Mohan Srivastava & Khaled M. Saad, 2020. "A Comparative Study of the Fractional-Order Clock Chemical Model," Mathematics, MDPI, vol. 8(9), pages 1-14, August.
    14. Ghanbari, Behzad, 2021. "On detecting chaos in a prey-predator model with prey’s counter-attack on juvenile predators," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    15. Jahanshahi, Hadi & Munoz-Pacheco, Jesus M. & Bekiros, Stelios & Alotaibi, Naif D., 2021. "A fractional-order SIRD model with time-dependent memory indexes for encompassing the multi-fractional characteristics of the COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    16. Li, Peiluan & Gao, Rong & Xu, Changjin & Ahmad, Shabir & Li, Ying & Akgül, Ali, 2023. "Bifurcation behavior and PDγ control mechanism of a fractional delayed genetic regulatory model," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    17. Ullah, Mohammad Sharif & Higazy, M. & Kabir, K.M. Ariful, 2022. "Dynamic analysis of mean-field and fractional-order epidemic vaccination strategies by evolutionary game approach," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    18. Chaudhary, Naveed Ishtiaq & Raja, Muhammad Asif Zahoor & Khan, Zeshan Aslam & Mehmood, Ammara & Shah, Syed Muslim, 2022. "Design of fractional hierarchical gradient descent algorithm for parameter estimation of nonlinear control autoregressive systems," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    19. Alina Alb Lupaş, 2021. "Applications of the Fractional Calculus in Fuzzy Differential Subordinations and Superordinations," Mathematics, MDPI, vol. 9(20), pages 1-10, October.
    20. Alkhazzan, Abdulwasea & Wang, Jungang & Nie, Yufeng & Khan, Hasib & Alzabut, Jehad, 2023. "An effective transport-related SVIR stochastic epidemic model with media coverage and Lévy noise," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:16:p:2656-:d:1727098. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.