IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i9p1450-d1644852.html
   My bibliography  Save this article

Hyers–Ulam Stability Results of Solutions for a Multi-Point φ -Riemann-Liouville Fractional Boundary Value Problem

Author

Listed:
  • Hicham Ait Mohammed

    (Applied Mathematics Laboratory, Kasdi Merbah University, BP511, Ouargla 30000, Algeria)

  • Safa M. Mirgani

    (Department of Mathematics and Statistics, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia)

  • Brahim Tellab

    (Applied Mathematics Laboratory, Kasdi Merbah University, BP511, Ouargla 30000, Algeria)

  • Abdelkader Amara

    (Applied Mathematics Laboratory, Kasdi Merbah University, BP511, Ouargla 30000, Algeria)

  • Mohammed El-Hadi Mezabia

    (Applied Mathematics Laboratory, Kasdi Merbah University, BP511, Ouargla 30000, Algeria)

  • Khaled Zennir

    (Department of Mathematics, College of Science, Qassim University, Buraydah 52571, Saudi Arabia)

  • Keltoum Bouhali

    (Department of Mathematics, College of Science, Qassim University, Buraydah 52571, Saudi Arabia)

Abstract

In this study, we investigate the existence, uniqueness, and Hyers–Ulam stability of a multi-term boundary value problem involving generalized φ -Riemann–Liouville operators. The uniqueness of the solution is demonstrated using Banach’s fixed-point theorem, while the existence is established through the application of classical fixed-point theorems by Krasnoselskii. We then delve into the Hyers–Ulam stability of the solutions, an aspect that has garnered significant attention from various researchers. By adapting certain sufficient conditions, we achieve stability results for the Hyers–Ulam (HU) type. Finally, we illustrate the theoretical findings with examples to enhance understanding.

Suggested Citation

  • Hicham Ait Mohammed & Safa M. Mirgani & Brahim Tellab & Abdelkader Amara & Mohammed El-Hadi Mezabia & Khaled Zennir & Keltoum Bouhali, 2025. "Hyers–Ulam Stability Results of Solutions for a Multi-Point φ -Riemann-Liouville Fractional Boundary Value Problem," Mathematics, MDPI, vol. 13(9), pages 1-25, April.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:9:p:1450-:d:1644852
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/9/1450/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/9/1450/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thabet Abdeljawad, 2013. "On Delta and Nabla Caputo Fractional Differences and Dual Identities," Discrete Dynamics in Nature and Society, Hindawi, vol. 2013, pages 1-12, July.
    2. Badr Alqahtani & Andreea Fulga & Erdal Karapınar, 2018. "Fixed Point Results on Δ-Symmetric Quasi-Metric Space via Simulation Function with an Application to Ulam Stability," Mathematics, MDPI, vol. 6(10), pages 1-19, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suwan, Iyad & Abdeljawad, Thabet & Jarad, Fahd, 2018. "Monotonicity analysis for nabla h-discrete fractional Atangana–Baleanu differences," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 50-59.
    2. Qiushuang Wang & Run Xu, 2022. "On Hilfer Generalized Proportional Nabla Fractional Difference Operators," Mathematics, MDPI, vol. 10(15), pages 1-16, July.
    3. Abdeljawad, Thabet, 2019. "Fractional difference operators with discrete generalized Mittag–Leffler kernels," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 315-324.
    4. Sintunavarat, Wutiphol & Turab, Ali, 2022. "Mathematical analysis of an extended SEIR model of COVID-19 using the ABC-fractional operator," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 65-84.
    5. Pshtiwan Othman Mohammed & Thabet Abdeljawad & Faraidun Kadir Hamasalh, 2021. "On Riemann—Liouville and Caputo Fractional Forward Difference Monotonicity Analysis," Mathematics, MDPI, vol. 9(11), pages 1-17, June.
    6. Almusawa, Musawa Yahya & Mohammed, Pshtiwan Othman, 2023. "Approximation of sequential fractional systems of Liouville–Caputo type by discrete delta difference operators," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    7. Panda, Sumati Kumari & Vijayakumar, Velusamy & Nagy, A.M., 2023. "Complex-valued neural networks with time delays in the Lp sense: Numerical simulations and finite time stability," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    8. Cui, Xueke & Li, Hong-Li & Zhang, Long & Hu, Cheng & Bao, Haibo, 2023. "Complete synchronization for discrete-time fractional-order coupled neural networks with time delays," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    9. Abdeljawad, Thabet & Baleanu, Dumitru, 2017. "Monotonicity analysis of a nabla discrete fractional operator with discrete Mittag-Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 106-110.
    10. Mohammed, Pshtiwan Othman & Abdeljawad, Thabet & Hamasalh, Faraidun Kadir, 2021. "Discrete Prabhakar fractional difference and sum operators," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    11. Kamsing Nonlaopon & Pshtiwan Othman Mohammed & Y. S. Hamed & Rebwar Salih Muhammad & Aram Bahroz Brzo & Hassen Aydi, 2022. "Analytical and Numerical Monotonicity Analyses for Discrete Delta Fractional Operators," Mathematics, MDPI, vol. 10(10), pages 1-9, May.
    12. Thabet Abdeljawad & Arran Fernandez, 2019. "On a New Class of Fractional Difference-Sum Operators with Discrete Mittag-Leffler Kernels," Mathematics, MDPI, vol. 7(9), pages 1-13, August.
    13. Rashid, Saima & Sultana, Sobia & Jarad, Fahd & Jafari, Hossein & Hamed, Y.S., 2021. "More efficient estimates via ℏ-discrete fractional calculus theory and applications," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    14. Jiraporn Reunsumrit & Thanin Sitthiwirattham, 2020. "On the Nonlocal Fractional Delta-Nabla Sum Boundary Value Problem for Sequential Fractional Delta-Nabla Sum-Difference Equations," Mathematics, MDPI, vol. 8(4), pages 1-13, March.
    15. Ran, Jie & Zhou, Yonghui & Pu, Hao, 2024. "Global stability and synchronization of stochastic discrete-time variable-order fractional-order delayed quaternion-valued neural networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 226(C), pages 413-437.
    16. Jarunee Soontharanon & Saowaluck Chasreechai & Thanin Sitthiwirattham, 2019. "A Coupled System of Fractional Difference Equations with Nonlocal Fractional Sum Boundary Conditions on the Discrete Half-Line," Mathematics, MDPI, vol. 7(3), pages 1-22, March.
    17. Rashid, Saima & Sultana, Sobia & Hammouch, Zakia & Jarad, Fahd & Hamed, Y.S., 2021. "Novel aspects of discrete dynamical type inequalities within fractional operators having generalized ℏ-discrete Mittag-Leffler kernels and application," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    18. Abdeljawad, Thabet, 2018. "Different type kernel h−fractional differences and their fractional h−sums," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 146-156.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:9:p:1450-:d:1644852. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.