IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v354y2019icp248-265.html
   My bibliography  Save this article

On fractional calculus with general analytic kernels

Author

Listed:
  • Fernandez, Arran
  • Özarslan, Mehmet Ali
  • Baleanu, Dumitru

Abstract

Many possible definitions have been proposed for fractional derivatives and integrals, starting from the classical Riemann–Liouville formula and its generalisations and modifying it by replacing the power function kernel with other kernel functions. We demonstrate, under some assumptions, how all of these modifications can be considered as special cases of a single, unifying, model of fractional calculus. We provide a fundamental connection with classical fractional calculus by writing these general fractional operators in terms of the original Riemann–Liouville fractional integral operator. We also consider inversion properties of the new operators, prove analogues of the Leibniz and chain rules in this model of fractional calculus, and solve some fractional differential equations using the new operators.

Suggested Citation

  • Fernandez, Arran & Özarslan, Mehmet Ali & Baleanu, Dumitru, 2019. "On fractional calculus with general analytic kernels," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 248-265.
  • Handle: RePEc:eee:apmaco:v:354:y:2019:i:c:p:248-265
    DOI: 10.1016/j.amc.2019.02.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300319301493
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2019.02.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Dazhi & Luo, Maokang, 2019. "Supplementary remark to ‘Representations of acting processes and memory effects: General fractional derivative and its application to theory of heat conduction with finite wave speeds’ [Applied Mathem," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 175-176.
    2. Zhao, Dazhi & Luo, Maokang, 2019. "Representations of acting processes and memory effects: General fractional derivative and its application to theory of heat conduction with finite wave speeds," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 531-544.
    3. H. J. Haubold & A. M. Mathai & R. K. Saxena, 2011. "Mittag-Leffler Functions and Their Applications," Journal of Applied Mathematics, Hindawi, vol. 2011, pages 1-51, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kumar, Sunil & Kumar, Ranbir & Cattani, Carlo & Samet, Bessem, 2020. "Chaotic behaviour of fractional predator-prey dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    2. Vellasco-Gomes, Arianne & de Figueiredo Camargo, Rubens & Bruno-Alfonso, Alexys, 2020. "Energy bands and Wannier functions of the fractional Kronig-Penney model," Applied Mathematics and Computation, Elsevier, vol. 380(C).
    3. Samraiz, Muhammad & Mehmood, Ahsan & Iqbal, Sajid & Naheed, Saima & Rahman, Gauhar & Chu, Yu-Ming, 2022. "Generalized fractional operator with applications in mathematical physics," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    4. Kucche, Kishor D. & Mali, Ashwini D. & Fernandez, Arran & Fahad, Hafiz Muhammad, 2022. "On tempered Hilfer fractional derivatives with respect to functions and the associated fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    5. Rahaman, Mostafijur & Mondal, Sankar Prasad & Alam, Shariful & Metwally, Ahmed Sayed M. & Salahshour, Soheil & Salimi, Mehdi & Ahmadian, Ali, 2022. "Manifestation of interval uncertainties for fractional differential equations under conformable derivative," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    6. Agarwal, Praveen & Singh, Ram, 2020. "Modelling of transmission dynamics of Nipah virus (Niv): A fractional order Approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    7. Ávalos-Ruiz, L.F. & Gómez-Aguilar, J.F. & Atangana, A. & Owolabi, Kolade M., 2019. "On the dynamics of fractional maps with power-law, exponential decay and Mittag–Leffler memory," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 364-388.
    8. Gómez-Aguilar, J.F., 2020. "Chaos and multiple attractors in a fractal–fractional Shinriki’s oscillator model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    9. Fahad, Hafiz Muhammad & Fernandez, Arran, 2021. "Operational calculus for Caputo fractional calculus with respect to functions and the associated fractional differential equations," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    10. Dumitru Baleanu & Arran Fernandez, 2019. "On Fractional Operators and Their Classifications," Mathematics, MDPI, vol. 7(9), pages 1-10, September.
    11. Muhammad Samraiz & Ahsan Mehmood & Saima Naheed & Gauhar Rahman & Artion Kashuri & Kamsing Nonlaopon, 2022. "On Novel Fractional Operators Involving the Multivariate Mittag–Leffler Function," Mathematics, MDPI, vol. 10(21), pages 1-19, October.
    12. Maike A. F. dos Santos, 2019. "Mittag–Leffler Memory Kernel in Lévy Flights," Mathematics, MDPI, vol. 7(9), pages 1-13, August.
    13. Dumitru Baleanu & Arran Fernandez & Ali Akgül, 2020. "On a Fractional Operator Combining Proportional and Classical Differintegrals," Mathematics, MDPI, vol. 8(3), pages 1-13, March.
    14. Chaudhary, Naveed Ishtiaq & Raja, Muhammad Asif Zahoor & Khan, Zeshan Aslam & Mehmood, Ammara & Shah, Syed Muslim, 2022. "Design of fractional hierarchical gradient descent algorithm for parameter estimation of nonlinear control autoregressive systems," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    15. Acay, Bahar & Inc, Mustafa & Mustapha, Umar Tasiu & Yusuf, Abdullahi, 2021. "Fractional dynamics and analysis for a lana fever infectious ailment with Caputo operator," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    16. Khater, Mostafa M.A. & Attia, Raghda A.M. & Abdel-Aty, Abdel-Haleem & Alharbi, W. & Lu, Dianchen, 2020. "Abundant analytical and numerical solutions of the fractional microbiological densities model in bacteria cell as a result of diffusion mechanisms," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    17. Faïçal Ndaïrou & Delfim F. M. Torres, 2021. "Optimal Control Problems Involving Combined Fractional Operators with General Analytic Kernels," Mathematics, MDPI, vol. 9(19), pages 1-17, September.
    18. Isah, Sunday Simon & Fernandez, Arran & Özarslan, Mehmet Ali, 2023. "On bivariate fractional calculus with general univariate analytic kernels," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    19. Oscar Martínez-Fuentes & Fidel Meléndez-Vázquez & Guillermo Fernández-Anaya & José Francisco Gómez-Aguilar, 2021. "Analysis of Fractional-Order Nonlinear Dynamic Systems with General Analytic Kernels: Lyapunov Stability and Inequalities," Mathematics, MDPI, vol. 9(17), pages 1-29, August.
    20. Odibat, Zaid & Baleanu, Dumitru, 2023. "A new fractional derivative operator with generalized cardinal sine kernel: Numerical simulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 224-233.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Dazhi & Yu, Guozhu & Tian, Yan, 2020. "Recursive formulae for the analytic solution of the nonlinear spatial conformable fractional evolution equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    2. Zu, Chuanjin & Gao, Yanming & Yu, Xiangyang, 2021. "Time fractional evolution of a single quantum state and entangled state," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    3. Edgardo Alvarez & Carlos Lizama, 2020. "The Super-Diffusive Singular Perturbation Problem," Mathematics, MDPI, vol. 8(3), pages 1-14, March.
    4. Angstmann, C.N. & Henry, B.I. & Jacobs, B.A. & McGann, A.V., 2017. "A time-fractional generalised advection equation from a stochastic process," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 175-183.
    5. Shiri, Babak & Baleanu, Dumitru, 2023. "All linear fractional derivatives with power functions’ convolution kernel and interpolation properties," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    6. Soma Dhar & Lipi B. Mahanta & Kishore Kumar Das, 2019. "Formulation Of The Simple Markovian Model Using Fractional Calculus Approach And Its Application To Analysis Of Queue Behaviour Of Severe Patients," Statistics in Transition New Series, Polish Statistical Association, vol. 20(1), pages 117-129, March.
    7. Saif Eddin Jabari & Nikolaos M. Freris & Deepthi Mary Dilip, 2020. "Sparse Travel Time Estimation from Streaming Data," Transportation Science, INFORMS, vol. 54(1), pages 1-20, January.
    8. Katarzyna Górska & Andrzej Horzela, 2021. "Non-Debye Relaxations: Two Types of Memories and Their Stieltjes Character," Mathematics, MDPI, vol. 9(5), pages 1-13, February.
    9. Zaheer Masood & Muhammad Asif Zahoor Raja & Naveed Ishtiaq Chaudhary & Khalid Mehmood Cheema & Ahmad H. Milyani, 2021. "Fractional Dynamics of Stuxnet Virus Propagation in Industrial Control Systems," Mathematics, MDPI, vol. 9(17), pages 1-27, September.
    10. Goswami, Koushik, 2021. "Work fluctuations in a generalized Gaussian active bath," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    11. Virginia Kiryakova, 2021. "A Guide to Special Functions in Fractional Calculus," Mathematics, MDPI, vol. 9(1), pages 1-40, January.
    12. Murat A. Sultanov & Durdimurod K. Durdiev & Askar A. Rahmonov, 2021. "Construction of an Explicit Solution of a Time-Fractional Multidimensional Differential Equation," Mathematics, MDPI, vol. 9(17), pages 1-12, August.
    13. Vieira, N. & Ferreira, M. & Rodrigues, M.M., 2022. "Time-fractional telegraph equation with ψ-Hilfer derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    14. Iomin, A. & Zaburdaev, V. & Pfohl, T., 2016. "Reaction front propagation of actin polymerization in a comb-reaction system," Chaos, Solitons & Fractals, Elsevier, vol. 92(C), pages 115-122.
    15. Sánchez, Ewin, 2019. "Burr type-XII as a superstatistical stationary distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 443-446.
    16. Serkan Araci & Gauhar Rahman & Abdul Ghaffar & Azeema & Kottakkaran Sooppy Nisar, 2019. "Fractional Calculus of Extended Mittag-Leffler Function and Its Applications to Statistical Distribution," Mathematics, MDPI, vol. 7(3), pages 1-14, March.
    17. Charles K. Amponsah & Tomasz J. Kozubowski & Anna K. Panorska, 2021. "A general stochastic model for bivariate episodes driven by a gamma sequence," Journal of Statistical Distributions and Applications, Springer, vol. 8(1), pages 1-31, December.
    18. Iomin, A., 2016. "Quantum continuous time random walk in nonlinear Schrödinger equation with disorder," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 64-70.
    19. Najma Ahmed & Nehad Ali Shah & Farman Ali & Dumitru Vieru & F.D. Zaman, 2021. "Analytical Solutions of the Fractional Mathematical Model for the Concentration of Tumor Cells for Constant Killing Rate," Mathematics, MDPI, vol. 9(10), pages 1-14, May.
    20. Hainaut, Donatien, 2021. "Lévy interest rate models with a long memory," LIDAM Discussion Papers ISBA 2021020, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:354:y:2019:i:c:p:248-265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.