IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v147y2021ics0960077921002848.html
   My bibliography  Save this article

Time fractional evolution of a single quantum state and entangled state

Author

Listed:
  • Zu, Chuanjin
  • Gao, Yanming
  • Yu, Xiangyang

Abstract

Memory effect of time fractional Schrödinger equation plays a significant role in evolution of a single quantum state and quantum entanglement. We investigate the time fractional evolution of a single quantum state and entangled state respectively. Comparing to the results of standard Schrödinger equation, we find that the influence of memory action is unstable, which will change over time until the result is opposite to the initial effect. Our study might provide a new perspective on the role of time fractional Schrödinger equation.

Suggested Citation

  • Zu, Chuanjin & Gao, Yanming & Yu, Xiangyang, 2021. "Time fractional evolution of a single quantum state and entangled state," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
  • Handle: RePEc:eee:chsofr:v:147:y:2021:i:c:s0960077921002848
    DOI: 10.1016/j.chaos.2021.110930
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921002848
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.110930?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yan, Xue-Qun, 2009. "Entanglement sudden death of two atoms successive passing a cavity," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1645-1650.
    2. Laskin, Nick, 2017. "Time fractional quantum mechanics," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 16-28.
    3. Tchoffo, M. & Tene, A.G., 2020. "Privacy amplification of entanglement parametric-down conversion based quantum key distribution via quantum logistic map for photon bases choice," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    4. Zhao, Dazhi & Luo, Maokang, 2019. "Representations of acting processes and memory effects: General fractional derivative and its application to theory of heat conduction with finite wave speeds," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 531-544.
    5. Borys, Przemyslaw, 2020. "Long term Hurst memory that does not die at long observation times—Deterministic map to describe ion channel activity," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    6. Bahramian, Alireza & Nouri, Ali & Baghdadi, Golnaz & Gharibzadeh, Shahriar & Towhidkhah, Farzad & Jafari, Sajad, 2019. "Introducing a chaotic map with a wide range of long-term memory as a model of patch-clamped ion channels current time series," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 361-368.
    7. Ahmed, E. & Elgazzar, A.S., 2007. "On fractional order differential equations model for nonlocal epidemics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(2), pages 607-614.
    8. Zhao, Dazhi & Luo, Maokang, 2019. "Supplementary remark to ‘Representations of acting processes and memory effects: General fractional derivative and its application to theory of heat conduction with finite wave speeds’ [Applied Mathem," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 175-176.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Souissi, Abdessatar & Mukhamedov, Farrukh & Soueidi, El Gheteb & Rhaima, Mohamed & Mukhamedova, Farzona, 2024. "Entangled hidden elephant random walk model," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    2. Zu, Chuanjin & Yu, Xiangyang, 2022. "Time fractional Schrödinger equation with a limit based fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    3. El Allati, A. & Bukbech, S. & El Anouz, K. & El Allali, Z., 2024. "Entanglement versus Bell non-locality via solving the fractional Schrödinger equation using the twisting model," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Dazhi & Yu, Guozhu & Tian, Yan, 2020. "Recursive formulae for the analytic solution of the nonlinear spatial conformable fractional evolution equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    2. Wei, Dongmei & Liu, Hailing & Li, Yongmei & Wan, Linchun & Qin, Sujuan & Wen, Qiaoyan & Gao, Fei, 2024. "Non-Markovian dynamics of time-fractional open quantum systems," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    3. Al-khedhairi, A. & Matouk, A.E. & Khan, I., 2019. "Chaotic dynamics and chaos control for the fractional-order geomagnetic field model," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 390-401.
    4. Fernandez, Arran & Özarslan, Mehmet Ali & Baleanu, Dumitru, 2019. "On fractional calculus with general analytic kernels," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 248-265.
    5. Pratap, A. & Raja, R. & Cao, J. & Lim, C.P. & Bagdasar, O., 2019. "Stability and pinning synchronization analysis of fractional order delayed Cohen–Grossberg neural networks with discontinuous activations," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 241-260.
    6. Agarwal, Praveen & Singh, Ram & Rehman, Attiq ul, 2021. "Numerical solution of hybrid mathematical model of dengue transmission with relapse and memory via Adam–Bashforth–Moulton predictor-corrector scheme," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    7. Samaneh Soradi Zeid & Mostafa Yousefi, 2016. "A Neural Network Approach for Solving Fractional-Order Model of HIV Infection of CD4+T-Cells," International Journal of Sciences, Office ijSciences, vol. 5(06), pages 65-69, June.
    8. Lu, Xin & Chen, Ning & Li, Hui & Guo, Shiyu & Chen, Zengtao, 2023. "Simulation of the temperature distribution of lithium-ion battery module considering the time-delay effect of the porous electrodes," Energy, Elsevier, vol. 284(C).
    9. Chai, Yi & Chen, Liping & Wu, Ranchao & Sun, Jian, 2012. "Adaptive pinning synchronization in fractional-order complex dynamical networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5746-5758.
    10. Gafiychuk, V. & Datsko, B. & Meleshko, V., 2008. "Analysis of fractional order Bonhoeffer–van der Pol oscillator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 418-424.
    11. Tian, Yan & He, Guitian & Liu, Zhibin & Zhong, Linfeng & Yang, Xinping & Stanley, H. Eugene & Tu, Zhe, 2021. "The impact of memory effect on resonance behavior in a fractional oscillator with small time delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    12. Zhao, Dazhi & Luo, Maokang, 2019. "Supplementary remark to ‘Representations of acting processes and memory effects: General fractional derivative and its application to theory of heat conduction with finite wave speeds’ [Applied Mathem," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 175-176.
    13. Fang, Qingxiang & Peng, Jigen, 2018. "Synchronization of fractional-order linear complex networks with directed coupling topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 542-553.
    14. Ricardo Almeida & Agnieszka B. Malinowska & Tatiana Odzijewicz, 2019. "Optimal Leader–Follower Control for the Fractional Opinion Formation Model," Journal of Optimization Theory and Applications, Springer, vol. 182(3), pages 1171-1185, September.
    15. Benjemaa, Mondher, 2018. "Taylor’s formula involving generalized fractional derivatives," Applied Mathematics and Computation, Elsevier, vol. 335(C), pages 182-195.
    16. Samraiz, Muhammad & Mehmood, Ahsan & Iqbal, Sajid & Naheed, Saima & Rahman, Gauhar & Chu, Yu-Ming, 2022. "Generalized fractional operator with applications in mathematical physics," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    17. Mohammad Imam Utoyo & Windarto & Aminatus Sa’adah, 2018. "Analysis of Fractional Order Mathematical Model of Hematopoietic Stem Cell Gene-Based Therapy," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2018, pages 1-11, August.
    18. Xu, Zhao & Sun, Kehui & Wang, Huihai, 2024. "Dynamics and function projection synchronization for the fractional-order financial risk system," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    19. Muhammad Samraiz & Ahsan Mehmood & Saima Naheed & Gauhar Rahman & Artion Kashuri & Kamsing Nonlaopon, 2022. "On Novel Fractional Operators Involving the Multivariate Mittag–Leffler Function," Mathematics, MDPI, vol. 10(21), pages 1-19, October.
    20. Pedjeu, Jean-C. & Ladde, Gangaram S., 2012. "Stochastic fractional differential equations: Modeling, method and analysis," Chaos, Solitons & Fractals, Elsevier, vol. 45(3), pages 279-293.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:147:y:2021:i:c:s0960077921002848. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.