IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i2p319-d1321876.html
   My bibliography  Save this article

Going Next after “A Guide to Special Functions in Fractional Calculus”: A Discussion Survey

Author

Listed:
  • Virginia Kiryakova

    (Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
    These authors contributed equally to this work.)

  • Jordanka Paneva-Konovska

    (Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
    These authors contributed equally to this work.)

Abstract

In the survey Kiryakova: “A Guide to Special Functions in Fractional Calculus” (published in this same journal in 2021) we proposed an overview of this huge class of special functions, including the Fox H -functions, the Fox–Wright generalized hypergeometric functions p Ψ q and a large number of their representatives. Among these, the Mittag-Leffler-type functions are the most popular and frequently used in fractional calculus. Naturally, these also include all “Classical Special Functions” of the class of the Meijer’s G - and p F q -functions, orthogonal polynomials and many elementary functions. However, it so happened that almost simultaneously with the appearance of the Mittag-Leffler function, another “fractionalized” variant of the exponential function was introduced by Le Roy, and in recent years, several authors have extended this special function and mentioned its applications. Then, we introduced a general class of so-called (multi-index) Le Roy-type functions, and observed that they fall in an “Extended Class of SF of FC”. This includes the I -functions of Rathie and, in particular, the H ¯ -functions of Inayat-Hussain, studied also by Buschman and Srivastava and by other authors. These functions initially arose in the theory of the Feynman integrals in statistical physics, but also include some important special functions that are well known in math, like the polylogarithms, Riemann Zeta functions, some famous polynomials and number sequences, etc. The I - and H ¯ -functions are introduced by Mellin–Barnes-type integral representations involving multi-valued fractional order powers of Γ -functions with a lot of singularities that are branch points. Here, we present briefly some preliminaries on the theory of these functions, and then our ideas and results as to how the considered Le Roy-type functions can be presented in their terms. Next, we also introduce Gelfond–Leontiev generalized operators of differentiation and integration for which the Le Roy-type functions are eigenfunctions. As shown, these “generalized integrations” can be extended as kinds of generalized operators of fractional integration, and are also compositions of “Le Roy type” Erdélyi–Kober integrals. A close analogy appears with the Generalized Fractional Calculus with H - and G -kernel functions, thus leading the way to its further development. Since the theory of the I - and H ¯ -functions still needs clarification of some details, we consider this work as a “Discussion Survey” and also provide a list of open problems.

Suggested Citation

  • Virginia Kiryakova & Jordanka Paneva-Konovska, 2024. "Going Next after “A Guide to Special Functions in Fractional Calculus”: A Discussion Survey," Mathematics, MDPI, vol. 12(2), pages 1-39, January.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:2:p:319-:d:1321876
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/2/319/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/2/319/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jordanka Paneva-Konovska, 2023. "Prabhakar Functions of Le Roy Type: Inequalities and Asymptotic Formulae," Mathematics, MDPI, vol. 11(17), pages 1-13, September.
    2. Sergei Rogosin, 2015. "The Role of the Mittag-Leffler Function in Fractional Modeling," Mathematics, MDPI, vol. 3(2), pages 1-14, May.
    3. H. J. Haubold & A. M. Mathai & R. K. Saxena, 2011. "Mittag-Leffler Functions and Their Applications," Journal of Applied Mathematics, Hindawi, vol. 2011, pages 1-51, May.
    4. Virginia Kiryakova, 2021. "A Guide to Special Functions in Fractional Calculus," Mathematics, MDPI, vol. 9(1), pages 1-40, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Virginia Kiryakova, 2021. "A Guide to Special Functions in Fractional Calculus," Mathematics, MDPI, vol. 9(1), pages 1-40, January.
    2. Jordanka Paneva-Konovska, 2021. "Series in Le Roy Type Functions: A Set of Results in the Complex Plane—A Survey," Mathematics, MDPI, vol. 9(12), pages 1-15, June.
    3. Jordanka Paneva-Konovska, 2022. "Taylor Series for the Mittag–Leffler Functions and Their Multi-Index Analogues," Mathematics, MDPI, vol. 10(22), pages 1-15, November.
    4. Jordanka Paneva-Konovska, 2023. "Prabhakar Functions of Le Roy Type: Inequalities and Asymptotic Formulae," Mathematics, MDPI, vol. 11(17), pages 1-13, September.
    5. Edgardo Alvarez & Carlos Lizama, 2020. "The Super-Diffusive Singular Perturbation Problem," Mathematics, MDPI, vol. 8(3), pages 1-14, March.
    6. Sweilam, N.H. & El-Sakout, D.M. & Muttardi, M.M., 2020. "Numerical study for time fractional stochastic semi linear advection diffusion equations," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    7. Ravi Agarwal & Snezhana Hristova & Donal O’Regan & Peter Kopanov, 2020. "p -Moment Mittag–Leffler Stability of Riemann–Liouville Fractional Differential Equations with Random Impulses," Mathematics, MDPI, vol. 8(8), pages 1-16, August.
    8. Agahi, Hamzeh & Khalili, Monavar, 2020. "Truncated Mittag-Leffler distribution and superstatistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    9. Rakesh K. Parmar, 2015. "A Class of Extended Mittag–Leffler Functions and Their Properties Related to Integral Transforms and Fractional Calculus," Mathematics, MDPI, vol. 3(4), pages 1-14, November.
    10. Nikolai Leonenko & Ely Merzbach, 2015. "Fractional Poisson Fields," Methodology and Computing in Applied Probability, Springer, vol. 17(1), pages 155-168, March.
    11. Angstmann, C.N. & Henry, B.I. & Jacobs, B.A. & McGann, A.V., 2017. "A time-fractional generalised advection equation from a stochastic process," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 175-183.
    12. Xiong, Xiangtuan & Xue, Xuemin, 2019. "A fractional Tikhonov regularization method for identifying a space-dependent source in the time-fractional diffusion equation," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 292-303.
    13. Soma Dhar & Lipi B. Mahanta & Kishore Kumar Das, 2019. "Formulation Of The Simple Markovian Model Using Fractional Calculus Approach And Its Application To Analysis Of Queue Behaviour Of Severe Patients," Statistics in Transition New Series, Polish Statistical Association, vol. 20(1), pages 117-129, March.
    14. Saif Eddin Jabari & Nikolaos M. Freris & Deepthi Mary Dilip, 2020. "Sparse Travel Time Estimation from Streaming Data," Transportation Science, INFORMS, vol. 54(1), pages 1-20, January.
    15. Katarzyna Górska & Andrzej Horzela, 2021. "Non-Debye Relaxations: Two Types of Memories and Their Stieltjes Character," Mathematics, MDPI, vol. 9(5), pages 1-13, February.
    16. Slawomir Blasiak, 2021. "Heat Transfer Analysis for Non-Contacting Mechanical Face Seals Using the Variable-Order Derivative Approach," Energies, MDPI, vol. 14(17), pages 1-13, September.
    17. Zaheer Masood & Muhammad Asif Zahoor Raja & Naveed Ishtiaq Chaudhary & Khalid Mehmood Cheema & Ahmad H. Milyani, 2021. "Fractional Dynamics of Stuxnet Virus Propagation in Industrial Control Systems," Mathematics, MDPI, vol. 9(17), pages 1-27, September.
    18. Goswami, Koushik, 2021. "Work fluctuations in a generalized Gaussian active bath," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    19. Meghadri Das & Guruprasad Samanta & Manuel De la Sen, 2021. "Stability Analysis and Optimal Control of a Fractional Order Synthetic Drugs Transmission Model," Mathematics, MDPI, vol. 9(7), pages 1-34, March.
    20. Murat A. Sultanov & Durdimurod K. Durdiev & Askar A. Rahmonov, 2021. "Construction of an Explicit Solution of a Time-Fractional Multidimensional Differential Equation," Mathematics, MDPI, vol. 9(17), pages 1-12, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:2:p:319-:d:1321876. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.