IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v661y2025ics0378437125000652.html
   My bibliography  Save this article

Barrier-crossing driven by fractional Gaussian noise in the context of reactive flux formalism: An exact result

Author

Listed:
  • Bakalis, Evangelos
  • Zerbetto, Francesco

Abstract

The problem of barrier-crossing is considered in the case when the surroundings of the barrier maintain some memory, while, at the same time, the heat bath is at equilibrium. The system is modelled by the generalised fractional Langevin equation with the noise term described by fractional Gaussian noise (fGn). The analytical solutions, in the time domain, are given in terms of the multinomial Mittag-Leffler function and the transmission coefficient is expressed in closed form as a function of the friction coefficient, of the barrier height, and of the Hurst exponent. Kramers’ theory rate constant is a special case of the present treatment.

Suggested Citation

  • Bakalis, Evangelos & Zerbetto, Francesco, 2025. "Barrier-crossing driven by fractional Gaussian noise in the context of reactive flux formalism: An exact result," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 661(C).
  • Handle: RePEc:eee:phsmap:v:661:y:2025:i:c:s0378437125000652
    DOI: 10.1016/j.physa.2025.130413
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437125000652
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2025.130413?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. H. J. Haubold & A. M. Mathai & R. K. Saxena, 2011. "Mittag‐Leffler Functions and Their Applications," Journal of Applied Mathematics, John Wiley & Sons, vol. 2011(1).
    2. Bakalis, Evangelos & Zerbetto, Francesco, 2023. "Hydrodynamic fluctuations in the presence of one parameter Mittag-Leffler friction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 620(C).
    3. H. J. Haubold & A. M. Mathai & R. K. Saxena, 2011. "Mittag-Leffler Functions and Their Applications," Journal of Applied Mathematics, Hindawi, vol. 2011, pages 1-51, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neha Gupta & Arun Kumar, 2023. "Fractional Poisson Processes of Order k and Beyond," Journal of Theoretical Probability, Springer, vol. 36(4), pages 2165-2191, December.
    2. Rohini Bhagwanrao Pote & Kuldeep Kumar Kataria, 2025. "On Erlang Queue with Multiple Arrivals and its Time-Changed Variant," Methodology and Computing in Applied Probability, Springer, vol. 27(3), pages 1-36, September.
    3. Jung, Jae Won & Seo, Sung Kyu & Kim, Kyungsik, 2025. "Joint probability densities of an active particle coupled to two heat reservoirs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 668(C).
    4. Anthony G. Pakes, 2025. "On the Stationary Measure for Markov Branching Processes," Mathematics, MDPI, vol. 13(11), pages 1-27, May.
    5. Ahmad A Abubaker & Khaled Matarneh & Suha B. Al-Shaikh & Mohammad Faisal Khan, 2025. "Some new applications of the fractional integral and four-parameter Mittag-Leffler function," PLOS ONE, Public Library of Science, vol. 20(2), pages 1-18, February.
    6. Ibtisam Aldawish & Mallikarjun G. Shrigan & Sheza El-Deeb & Hari M. Srivastava, 2025. "On Bi-Univalent Function Classes Defined via Gregory Polynomials," Mathematics, MDPI, vol. 13(19), pages 1-10, September.
    7. Virginia Kiryakova & Jordanka Paneva-Konovska, 2024. "Going Next after “A Guide to Special Functions in Fractional Calculus”: A Discussion Survey," Mathematics, MDPI, vol. 12(2), pages 1-39, January.
    8. Edgardo Alvarez & Carlos Lizama, 2020. "The Super-Diffusive Singular Perturbation Problem," Mathematics, MDPI, vol. 8(3), pages 1-14, March.
    9. Sweilam, N.H. & El-Sakout, D.M. & Muttardi, M.M., 2020. "Numerical study for time fractional stochastic semi linear advection diffusion equations," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    10. Ravi Agarwal & Snezhana Hristova & Donal O’Regan & Peter Kopanov, 2020. "p -Moment Mittag–Leffler Stability of Riemann–Liouville Fractional Differential Equations with Random Impulses," Mathematics, MDPI, vol. 8(8), pages 1-16, August.
    11. Agahi, Hamzeh & Khalili, Monavar, 2020. "Truncated Mittag-Leffler distribution and superstatistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    12. Praveendra Singh & Madhu Jain, 2024. "Inventory policy for degrading items under advanced payment with price and memory sensitive demand using metaheuristic techniques," Operational Research, Springer, vol. 24(3), pages 1-34, September.
    13. Rakesh K. Parmar, 2015. "A Class of Extended Mittag–Leffler Functions and Their Properties Related to Integral Transforms and Fractional Calculus," Mathematics, MDPI, vol. 3(4), pages 1-14, November.
    14. Nikolai Leonenko & Ely Merzbach, 2015. "Fractional Poisson Fields," Methodology and Computing in Applied Probability, Springer, vol. 17(1), pages 155-168, March.
    15. Angstmann, C.N. & Henry, B.I. & Jacobs, B.A. & McGann, A.V., 2017. "A time-fractional generalised advection equation from a stochastic process," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 175-183.
    16. Xiong, Xiangtuan & Xue, Xuemin, 2019. "A fractional Tikhonov regularization method for identifying a space-dependent source in the time-fractional diffusion equation," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 292-303.
    17. Soma Dhar & Lipi B. Mahanta & Kishore Kumar Das, 2019. "Formulation Of The Simple Markovian Model Using Fractional Calculus Approach And Its Application To Analysis Of Queue Behaviour Of Severe Patients," Statistics in Transition New Series, Polish Statistical Association, vol. 20(1), pages 117-129, March.
    18. Saif Eddin Jabari & Nikolaos M. Freris & Deepthi Mary Dilip, 2020. "Sparse Travel Time Estimation from Streaming Data," Transportation Science, INFORMS, vol. 54(1), pages 1-20, January.
    19. Katarzyna Górska & Andrzej Horzela, 2021. "Non-Debye Relaxations: Two Types of Memories and Their Stieltjes Character," Mathematics, MDPI, vol. 9(5), pages 1-13, February.
    20. Slawomir Blasiak, 2021. "Heat Transfer Analysis for Non-Contacting Mechanical Face Seals Using the Variable-Order Derivative Approach," Energies, MDPI, vol. 14(17), pages 1-13, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:661:y:2025:i:c:s0378437125000652. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.