IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i11p1802-d1666503.html
   My bibliography  Save this article

On the Stationary Measure for Markov Branching Processes

Author

Listed:
  • Anthony G. Pakes

    (Department of Mathematics and Statistics, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia)

Abstract

A previous study determined criteria ensuring that a probability distribution supported in positive integers is the limiting conditional law of a subcritical Markov branching process. It is known that there is an close connection between the limiting conditional law and the stationary measure of the transition semigroup. This paper revisits that theme of by seeking tractable criteria ensuring that a sequence on positive integers is the stationary measure of a subcritical or critical Markov branching process. These criteria are illustrated with several examples. The subcritical case motivates consideration of the Sibuya distribution, leading to the demonstration that members of a certain family of complete Bernstein functions, in fact, are Thorin–Bernstein. The critical case involves deriving a notion of the limiting law of population size given that extinction occurs at a precise future time. Examples are given, and some show an interesting relation between stationary measures and Hausdorff moment sequences.

Suggested Citation

  • Anthony G. Pakes, 2025. "On the Stationary Measure for Markov Branching Processes," Mathematics, MDPI, vol. 13(11), pages 1-27, May.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:11:p:1802-:d:1666503
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/11/1802/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/11/1802/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. H. J. Haubold & A. M. Mathai & R. K. Saxena, 2011. "Mittag‐Leffler Functions and Their Applications," Journal of Applied Mathematics, John Wiley & Sons, vol. 2011(1).
    2. H. J. Haubold & A. M. Mathai & R. K. Saxena, 2011. "Mittag-Leffler Functions and Their Applications," Journal of Applied Mathematics, Hindawi, vol. 2011, pages 1-51, May.
    3. Devroye, Luc, 1993. "A triptych of discrete distributions related to the stable law," Statistics & Probability Letters, Elsevier, vol. 18(5), pages 349-351, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bakalis, Evangelos & Zerbetto, Francesco, 2025. "Barrier-crossing driven by fractional Gaussian noise in the context of reactive flux formalism: An exact result," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 661(C).
    2. Neha Gupta & Arun Kumar, 2023. "Fractional Poisson Processes of Order k and Beyond," Journal of Theoretical Probability, Springer, vol. 36(4), pages 2165-2191, December.
    3. Ahmad A Abubaker & Khaled Matarneh & Suha B. Al-Shaikh & Mohammad Faisal Khan, 2025. "Some new applications of the fractional integral and four-parameter Mittag-Leffler function," PLOS ONE, Public Library of Science, vol. 20(2), pages 1-18, February.
    4. Masanao Aoki, 2006. "Thermodynamic Limits of Macroeconomic or Financial Models: One-and Two-Parameter Poisson-Dirichlet Models (Forthcoming in "Journal of Economic Dynamics and Control", 2007. )," CARF F-Series CARF-F-083, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    5. Edgardo Alvarez & Carlos Lizama, 2020. "The Super-Diffusive Singular Perturbation Problem," Mathematics, MDPI, vol. 8(3), pages 1-14, March.
    6. Christoph, Gerd & Schreiber, Karina, 2000. "Scaled Sibuya distribution and discrete self-decomposability," Statistics & Probability Letters, Elsevier, vol. 48(2), pages 181-187, June.
    7. Sapatinas, Theofanis, 1995. "Characterizations of probability distributions based on discrete p-monotonicity," Statistics & Probability Letters, Elsevier, vol. 24(4), pages 339-344, September.
    8. Weron, Rafal, 1996. "On the Chambers-Mallows-Stuck method for simulating skewed stable random variables," Statistics & Probability Letters, Elsevier, vol. 28(2), pages 165-171, June.
    9. Angstmann, C.N. & Henry, B.I. & Jacobs, B.A. & McGann, A.V., 2017. "A time-fractional generalised advection equation from a stochastic process," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 175-183.
    10. Buddana Amrutha & Kozubowski Tomasz J., 2014. "Discrete Pareto Distributions," Stochastics and Quality Control, De Gruyter, vol. 29(2), pages 143-156, December.
    11. Soma Dhar & Lipi B. Mahanta & Kishore Kumar Das, 2019. "Formulation Of The Simple Markovian Model Using Fractional Calculus Approach And Its Application To Analysis Of Queue Behaviour Of Severe Patients," Statistics in Transition New Series, Polish Statistical Association, vol. 20(1), pages 117-129, March.
    12. Saif Eddin Jabari & Nikolaos M. Freris & Deepthi Mary Dilip, 2020. "Sparse Travel Time Estimation from Streaming Data," Transportation Science, INFORMS, vol. 54(1), pages 1-20, January.
    13. Katarzyna Górska & Andrzej Horzela, 2021. "Non-Debye Relaxations: Two Types of Memories and Their Stieltjes Character," Mathematics, MDPI, vol. 9(5), pages 1-13, February.
    14. Orsingher, Enzo & Polito, Federico, 2012. "The space-fractional Poisson process," Statistics & Probability Letters, Elsevier, vol. 82(4), pages 852-858.
    15. Michael Grabchak, 2022. "Discrete Tempered Stable Distributions," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1877-1890, September.
    16. Nadjib Bouzar, 2008. "The semi-Sibuya distribution," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(2), pages 459-464, June.
    17. Masanao Aoki & Hiroshi Yoshikawa, 2012. "Non-self-averaging in macroeconomic models: a criticism of modern micro-founded macroeconomics," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 7(1), pages 1-22, May.
    18. Zaheer Masood & Muhammad Asif Zahoor Raja & Naveed Ishtiaq Chaudhary & Khalid Mehmood Cheema & Ahmad H. Milyani, 2021. "Fractional Dynamics of Stuxnet Virus Propagation in Industrial Control Systems," Mathematics, MDPI, vol. 9(17), pages 1-27, September.
    19. Goswami, Koushik, 2021. "Work fluctuations in a generalized Gaussian active bath," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    20. Aoki, Masanao, 2008. "Thermodynamic limits of macroeconomic or financial models: One- and two-parameter Poisson-Dirichlet models," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 66-84, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:11:p:1802-:d:1666503. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.