IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v126y2019icp7-11.html

Fundamental results on weighted Caputo–Fabrizio fractional derivative

Author

Listed:
  • Al-Refai, Mohammed
  • Jarrah, Abdulla M.

Abstract

In this paper, we define the weighted Caputo–Fabrizio fractional derivative of Caputo sense, and study related linear and nonlinear fractional differential equations. The solution of the linear fractional differential equation is obtained in a closed form, and has been used to define the weighted Caputo–Fabrizio fractional integral. We study main properties of the weighted Caputo–Fabrizio fractional derivative and integral. We also, apply the Banach fixed point theorem to establish the existence of a unique solution to the nonlinear fractional differential equation. Two examples are presented to illustrate the efficiency of the obtained results.

Suggested Citation

  • Al-Refai, Mohammed & Jarrah, Abdulla M., 2019. "Fundamental results on weighted Caputo–Fabrizio fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 7-11.
  • Handle: RePEc:eee:chsofr:v:126:y:2019:i:c:p:7-11
    DOI: 10.1016/j.chaos.2019.05.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077919302000
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.05.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Atangana, Abdon, 2016. "On the new fractional derivative and application to nonlinear Fisher’s reaction–diffusion equation," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 948-956.
    2. Gómez-Aguilar, J.F. & López-López, M.G. & Alvarado-Martínez, V.M. & Reyes-Reyes, J. & Adam-Medina, M., 2016. "Modeling diffusive transport with a fractional derivative without singular kernel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 467-481.
    3. Alkahtani, B.S.T. & Atangana, A., 2016. "Controlling the wave movement on the surface of shallow water with the Caputo–Fabrizio derivative with fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 539-546.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dehestani, H. & Ordokhani, Y. & Razzaghi, M., 2020. "Application of fractional Gegenbauer functions in variable-order fractional delay-type equations with non-singular kernel derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    2. Panda, Sumati Kumari & Abdeljawad, Thabet & Ravichandran, C., 2020. "A complex valued approach to the solutions of Riemann-Liouville integral, Atangana-Baleanu integral operator and non-linear Telegraph equation via fixed point method," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    3. Acay, Bahar & Bas, Erdal & Abdeljawad, Thabet, 2020. "Fractional economic models based on market equilibrium in the frame of different type kernels," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    4. Oscar Martínez-Fuentes & Fidel Meléndez-Vázquez & Guillermo Fernández-Anaya & José Francisco Gómez-Aguilar, 2021. "Analysis of Fractional-Order Nonlinear Dynamic Systems with General Analytic Kernels: Lyapunov Stability and Inequalities," Mathematics, MDPI, vol. 9(17), pages 1-29, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Owolabi, Kolade M. & Atangana, Abdon, 2017. "Numerical approximation of nonlinear fractional parabolic differential equations with Caputo–Fabrizio derivative in Riemann–Liouville sense," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 171-179.
    2. Sun, HongGuang & Hao, Xiaoxiao & Zhang, Yong & Baleanu, Dumitru, 2017. "Relaxation and diffusion models with non-singular kernels," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 590-596.
    3. Saad, Khaled M. & Gómez-Aguilar, J.F., 2018. "Analysis of reaction–diffusion system via a new fractional derivative with non-singular kernel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 703-716.
    4. Liu, Zhengguang & Cheng, Aijie & Li, Xiaoli, 2017. "A second order Crank–Nicolson scheme for fractional Cattaneo equation based on new fractional derivative," Applied Mathematics and Computation, Elsevier, vol. 311(C), pages 361-374.
    5. Cai, Rui-Yang & Zhou, Hua-Cheng & Kou, Chun-Hai, 2021. "Boundary control strategy for three kinds of fractional heat equations with control-matched disturbances," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    6. Abdulhameed, M. & Vieru, D. & Roslan, R., 2017. "Modeling electro-magneto-hydrodynamic thermo-fluidic transport of biofluids with new trend of fractional derivative without singular kernel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 233-252.
    7. Yu, Xiangnan & Zhang, Yong & Sun, HongGuang & Zheng, Chunmiao, 2018. "Time fractional derivative model with Mittag-Leffler function kernel for describing anomalous diffusion: Analytical solution in bounded-domain and model comparison," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 306-312.
    8. Gómez-Aguilar, J.F., 2017. "Irving–Mullineux oscillator via fractional derivatives with Mittag-Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 95(C), pages 179-186.
    9. Costa, F.S. & Oliveira, D.S. & Rodrigues, F.G. & de Oliveira, E.C., 2019. "The fractional space–time radial diffusion equation in terms of the Fox’s H-function," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 403-418.
    10. Sania Qureshi & Norodin A. Rangaig & Dumitru Baleanu, 2019. "New Numerical Aspects of Caputo-Fabrizio Fractional Derivative Operator," Mathematics, MDPI, vol. 7(4), pages 1-14, April.
    11. Wei, Leilei & Li, Wenbo, 2021. "Local discontinuous Galerkin approximations to variable-order time-fractional diffusion model based on the Caputo–Fabrizio fractional derivative," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 280-290.
    12. Jahanshahi, S. & Babolian, E. & Torres, D.F.M. & Vahidi, A.R., 2017. "A fractional Gauss–Jacobi quadrature rule for approximating fractional integrals and derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 295-304.
    13. Koca, Ilknur, 2018. "Efficient numerical approach for solving fractional partial differential equations with non-singular kernel derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 278-286.
    14. Hosseininia, M. & Heydari, M.H., 2019. "Legendre wavelets for the numerical solution of nonlinear variable-order time fractional 2D reaction-diffusion equation involving Mittag–Leffler non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 400-407.
    15. Xu, Xuefang & Li, Bo & Qiao, Zijian & Shi, Peiming & Shao, Huaishuang & Li, Ruixiong, 2023. "Caputo-Fabrizio fractional order derivative stochastic resonance enhanced by ADOF and its application in fault diagnosis of wind turbine drivetrain," Renewable Energy, Elsevier, vol. 219(P1).
    16. Hassan, Waqar Ul & Shabbir, Khurram & Zeeshan, Ahmed & Ellahi, Rahmat, 2025. "Regression analysis for thermal transport of fractional-order magnetohydrodynamic Maxwell fluid flow under the influence of chemical reaction using integrated machine learning approach," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
    17. Abro, Kashif Ali & Abro, Irfan Ali & Yıldırım, Ahmet, 2020. "A comparative analysis of sulfate SO4−2 ion concentration via modern fractional derivatives: An industrial application to cooling system of power plant," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    18. Riaz, M.B. & Iftikhar, N., 2020. "A comparative study of heat transfer analysis of MHD Maxwell fluid in view of local and nonlocal differential operators," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    19. Odibat, Zaid & Baleanu, Dumitru, 2023. "A new fractional derivative operator with generalized cardinal sine kernel: Numerical simulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 224-233.
    20. Owolabi, Kolade M. & Atangana, Abdon, 2018. "Chaotic behaviour in system of noninteger-order ordinary differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 362-370.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:126:y:2019:i:c:p:7-11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.