IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i4p357-d223587.html
   My bibliography  Save this article

An Enhanced Partial Search to Particle Swarm Optimization for Unconstrained Optimization

Author

Listed:
  • Shu-Kai S. Fan

    (Department of Industrial Engineering and Management, National Taipei University of Technology, Taipei City 10608, Taiwan)

  • Chih-Hung Jen

    (Department of Information Management, Lunghwa University of Science and Technology, Guishan, Taoyuan County 33306, Taiwan)

Abstract

Particle swarm optimization (PSO) is a population-based optimization technique that has been applied extensively to a wide range of engineering problems. This paper proposes a variation of the original PSO algorithm for unconstrained optimization, dubbed the enhanced partial search particle swarm optimizer (EPS-PSO), using the idea of cooperative multiple swarms in an attempt to improve the convergence and efficiency of the original PSO algorithm. The cooperative searching strategy is particularly devised to prevent the particles from being trapped into the local optimal solutions and tries to locate the global optimal solution efficiently. The effectiveness of the proposed algorithm is verified through the simulation study where the EPS-PSO algorithm is compared to a variety of exiting “cooperative” PSO algorithms in terms of noted benchmark functions.

Suggested Citation

  • Shu-Kai S. Fan & Chih-Hung Jen, 2019. "An Enhanced Partial Search to Particle Swarm Optimization for Unconstrained Optimization," Mathematics, MDPI, vol. 7(4), pages 1-16, April.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:4:p:357-:d:223587
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/4/357/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/4/357/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fan, Shu-Kai S. & Zahara, Erwie, 2007. "A hybrid simplex search and particle swarm optimization for unconstrained optimization," European Journal of Operational Research, Elsevier, vol. 181(2), pages 527-548, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Waqar Muhammad Ashraf & Ghulam Moeen Uddin & Syed Muhammad Arafat & Sher Afghan & Ahmad Hassan Kamal & Muhammad Asim & Muhammad Haider Khan & Muhammad Waqas Rafique & Uwe Naumann & Sajawal Gul Niazi &, 2020. "Optimization of a 660 MW e Supercritical Power Plant Performance—A Case of Industry 4.0 in the Data-Driven Operational Management Part 1. Thermal Efficiency," Energies, MDPI, vol. 13(21), pages 1-33, October.
    2. Jakubik, Johannes & Binding, Adrian & Feuerriegel, Stefan, 2021. "Directed particle swarm optimization with Gaussian-process-based function forecasting," European Journal of Operational Research, Elsevier, vol. 295(1), pages 157-169.
    3. Kuo, R.J. & Lee, Y.H. & Zulvia, Ferani E. & Tien, F.C., 2015. "Solving bi-level linear programming problem through hybrid of immune genetic algorithm and particle swarm optimization algorithm," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 1013-1026.
    4. Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2011. "A hybrid shuffled complex evolution approach with pattern search for unconstrained optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(9), pages 1901-1909.
    5. Witanowski, Łukasz & Ziółkowski, Paweł & Klonowicz, Piotr & Lampart, Piotr, 2023. "A hybrid approach to optimization of radial inflow turbine with principal component analysis," Energy, Elsevier, vol. 272(C).
    6. Liou, Cheng-Dar & Hsieh, Yi-Chih, 2015. "A hybrid algorithm for the multi-stage flow shop group scheduling with sequence-dependent setup and transportation times," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 258-267.
    7. Morteza Ahandani & Mohammad-Taghi Vakil-Baghmisheh & Mohammad Talebi, 2014. "Hybridizing local search algorithms for global optimization," Computational Optimization and Applications, Springer, vol. 59(3), pages 725-748, December.
    8. Weihang Zhu, 2011. "Massively parallel differential evolution—pattern search optimization with graphics hardware acceleration: an investigation on bound constrained optimization problems," Journal of Global Optimization, Springer, vol. 50(3), pages 417-437, July.
    9. Maryam Mousavi & Hwa Jen Yap & Siti Nurmaya Musa & Farzad Tahriri & Siti Zawiah Md Dawal, 2017. "Multi-objective AGV scheduling in an FMS using a hybrid of genetic algorithm and particle swarm optimization," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-24, March.
    10. Jianfeng Liu & Nikolaos Ploskas & Nikolaos V. Sahinidis, 2019. "Tuning BARON using derivative-free optimization algorithms," Journal of Global Optimization, Springer, vol. 74(4), pages 611-637, August.
    11. Xiao, Yi & Liu, John J. & Hu, Yi & Wang, Yingfeng & Lai, Kin Keung & Wang, Shouyang, 2014. "A neuro-fuzzy combination model based on singular spectrum analysis for air transport demand forecasting," Journal of Air Transport Management, Elsevier, vol. 39(C), pages 1-11.
    12. Khalid Abdulaziz Alnowibet & Salem Mahdi & Ahmad M. Alshamrani & Karam M. Sallam & Ali Wagdy Mohamed, 2022. "A Family of Hybrid Stochastic Conjugate Gradient Algorithms for Local and Global Minimization Problems," Mathematics, MDPI, vol. 10(19), pages 1-37, October.
    13. Xu, Meng & Droguett, Enrique López & Lins, Isis Didier & das Chagas Moura, Márcio, 2017. "On the q-Weibull distribution for reliability applications: An adaptive hybrid artificial bee colony algorithm for parameter estimation," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 93-105.
    14. Ferreiro, Ana M. & García-Rodríguez, José Antonio & Vázquez, Carlos & e Silva, E. Costa & Correia, A., 2019. "Parallel two-phase methods for global optimization on GPU," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 156(C), pages 67-90.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:4:p:357-:d:223587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.