IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v81y2011i9p1901-1909.html
   My bibliography  Save this article

A hybrid shuffled complex evolution approach with pattern search for unconstrained optimization

Author

Listed:
  • Mariani, Viviana Cocco
  • Coelho, Leandro dos Santos

Abstract

The difficulties associated with using classical mathematical programming methods on complex optimization problems have contributed to the development of alternative and efficient numerical approaches. Recently, to overcome the limitations of classical optimization methods, researchers have proposed a wide variety of meta-heuristics for searching near-optimum solutions to problems. Among the existing meta-heuristic algorithms, a relatively new optimization paradigm is the Shuffled Complex Evolution at the University of Arizona (SCE-UA) which is a global optimization strategy that combines concepts of the competition evolution theory, downhill simplex procedure of Nelder–Mead, controlled random search and complex shuffling. In an attempt to reduce processing time and improve the quality of solutions, particularly to avoid being trapped in local optima, in this paper is proposed a hybrid SCE-UA approach. The proposed hybrid algorithm is the combination of SCE-UA (without Nelder–Mead downhill simplex procedure) and a pattern search approach, called SCE-PS, for unconstrained optimization. Pattern search methods are derivative-free, meaning that they do not use explicit or approximate derivatives. Moreover, pattern search algorithms are direct search methods well suitable for the global optimization of highly nonlinear, multiparameter, and multimodal objective functions. The proposed SCE-PS method is tested with six benchmark optimization problems. Simulation results show that the proposed SCE-PS improves the searching performance when compared with the classical SCE-UA and a genetic algorithm with floating-point representation for all the tested problems. As evidenced by the performance indices based on the mean performance of objective function in 30 runs and mean of computational time, the SCE-PS algorithm has demonstrated to be effective and efficient at locating best-practice optimal solutions for unconstrained optimization.

Suggested Citation

  • Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2011. "A hybrid shuffled complex evolution approach with pattern search for unconstrained optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(9), pages 1901-1909.
  • Handle: RePEc:eee:matcom:v:81:y:2011:i:9:p:1901-1909
    DOI: 10.1016/j.matcom.2011.02.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475411000802
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2011.02.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fan, Shu-Kai S. & Zahara, Erwie, 2007. "A hybrid simplex search and particle swarm optimization for unconstrained optimization," European Journal of Operational Research, Elsevier, vol. 181(2), pages 527-548, September.
    2. Hedar, Abdel-Rahman & Fukushima, Masao, 2006. "Tabu Search directed by direct search methods for nonlinear global optimization," European Journal of Operational Research, Elsevier, vol. 170(2), pages 329-349, April.
    3. Herrera, F. & Lozano, M. & Molina, D., 2006. "Continuous scatter search: An analysis of the integration of some combination methods and improvement strategies," European Journal of Operational Research, Elsevier, vol. 169(2), pages 450-476, March.
    4. Omran, Mahamed G.H. & Engelbrecht, Andries P. & Salman, Ayed, 2009. "Bare bones differential evolution," European Journal of Operational Research, Elsevier, vol. 196(1), pages 128-139, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nantiwat Pholdee & Sujin Bureerat, 2016. "Hybrid real-code ant colony optimisation for constrained mechanical design," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(2), pages 474-491, January.
    2. Verwaeren, Jan & Van der Weeën, Pieter & De Baets, Bernard, 2015. "A search grid for parameter optimization as a byproduct of model sensitivity analysis," Applied Mathematics and Computation, Elsevier, vol. 261(C), pages 8-27.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gouvêa, Érica J.C. & Regis, Rommel G. & Soterroni, Aline C. & Scarabello, Marluce C. & Ramos, Fernando M., 2016. "Global optimization using q-gradients," European Journal of Operational Research, Elsevier, vol. 251(3), pages 727-738.
    2. Hvattum, Lars Magnus & Glover, Fred, 2009. "Finding local optima of high-dimensional functions using direct search methods," European Journal of Operational Research, Elsevier, vol. 195(1), pages 31-45, May.
    3. Piotrowski, Adam P. & Napiorkowski, Jaroslaw J. & Kiczko, Adam, 2012. "Differential Evolution algorithm with Separated Groups for multi-dimensional optimization problems," European Journal of Operational Research, Elsevier, vol. 216(1), pages 33-46.
    4. Schlereth, Christian & Stepanchuk, Tanja & Skiera, Bernd, 2010. "Optimization and analysis of the profitability of tariff structures with two-part tariffs," European Journal of Operational Research, Elsevier, vol. 206(3), pages 691-701, November.
    5. M. Bierlaire & M. Thémans & N. Zufferey, 2010. "A Heuristic for Nonlinear Global Optimization," INFORMS Journal on Computing, INFORMS, vol. 22(1), pages 59-70, February.
    6. Waqar Muhammad Ashraf & Ghulam Moeen Uddin & Syed Muhammad Arafat & Sher Afghan & Ahmad Hassan Kamal & Muhammad Asim & Muhammad Haider Khan & Muhammad Waqas Rafique & Uwe Naumann & Sajawal Gul Niazi &, 2020. "Optimization of a 660 MW e Supercritical Power Plant Performance—A Case of Industry 4.0 in the Data-Driven Operational Management Part 1. Thermal Efficiency," Energies, MDPI, vol. 13(21), pages 1-33, October.
    7. Kuo, R.J. & Lee, Y.H. & Zulvia, Ferani E. & Tien, F.C., 2015. "Solving bi-level linear programming problem through hybrid of immune genetic algorithm and particle swarm optimization algorithm," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 1013-1026.
    8. S.-C. Horng & S.-Y. Lin, 2009. "Ordinal Optimization of G/G/1/K Polling Systems with k-Limited Service Discipline," Journal of Optimization Theory and Applications, Springer, vol. 140(2), pages 213-231, February.
    9. Oscar Cordón & Sergio Damas & Jose Santamaría & Rafael Martí, 2008. "Scatter Search for the Point-Matching Problem in 3D Image Registration," INFORMS Journal on Computing, INFORMS, vol. 20(1), pages 55-68, February.
    10. Witanowski, Łukasz & Ziółkowski, Paweł & Klonowicz, Piotr & Lampart, Piotr, 2023. "A hybrid approach to optimization of radial inflow turbine with principal component analysis," Energy, Elsevier, vol. 272(C).
    11. Naanaa, Anis, 2015. "Fast chaotic optimization algorithm based on spatiotemporal maps for global optimization," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 402-411.
    12. Zhang, Enze & Wu, Yifei & Chen, Qingwei, 2014. "A practical approach for solving multi-objective reliability redundancy allocation problems using extended bare-bones particle swarm optimization," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 65-76.
    13. Liou, Cheng-Dar & Hsieh, Yi-Chih, 2015. "A hybrid algorithm for the multi-stage flow shop group scheduling with sequence-dependent setup and transportation times," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 258-267.
    14. Weihang Zhu, 2011. "Massively parallel differential evolution—pattern search optimization with graphics hardware acceleration: an investigation on bound constrained optimization problems," Journal of Global Optimization, Springer, vol. 50(3), pages 417-437, July.
    15. A. Custódio & J. Madeira, 2015. "GLODS: Global and Local Optimization using Direct Search," Journal of Global Optimization, Springer, vol. 62(1), pages 1-28, May.
    16. Fei Wei & Yuping Wang & Hongwei Lin, 2014. "A New Filled Function Method with Two Parameters for Global Optimization," Journal of Optimization Theory and Applications, Springer, vol. 163(2), pages 510-527, November.
    17. Khalid Abdulaziz Alnowibet & Salem Mahdi & Ahmad M. Alshamrani & Karam M. Sallam & Ali Wagdy Mohamed, 2022. "A Family of Hybrid Stochastic Conjugate Gradient Algorithms for Local and Global Minimization Problems," Mathematics, MDPI, vol. 10(19), pages 1-37, October.
    18. Xu, Meng & Droguett, Enrique López & Lins, Isis Didier & das Chagas Moura, Márcio, 2017. "On the q-Weibull distribution for reliability applications: An adaptive hybrid artificial bee colony algorithm for parameter estimation," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 93-105.
    19. Ferreiro, Ana M. & García-Rodríguez, José Antonio & Vázquez, Carlos & e Silva, E. Costa & Correia, A., 2019. "Parallel two-phase methods for global optimization on GPU," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 156(C), pages 67-90.
    20. Sotirios K. Goudos & Margot Deruyck & David Plets & Luc Martens & Wout Joseph, 2017. "Optimization of Power Consumption in 4G LTE Networks Using a Novel Barebones Self-adaptive Differential Evolution Algorithm," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 66(1), pages 109-120, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:81:y:2011:i:9:p:1901-1909. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.