IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v269y2015icp402-411.html
   My bibliography  Save this article

Fast chaotic optimization algorithm based on spatiotemporal maps for global optimization

Author

Listed:
  • Naanaa, Anis

Abstract

Recently, many researches have tackled chaos optimization algorithms (COAs) as an attractive method of global optimization. Considering the statistical property such as the probability density function (PDF) of the chaotic sequences, the search ability of COA can improve the global searching capability by escaping the local solutions than classical stochastic optimization algorithms. This paper proposes a novel method for global optimization using spatiotemporal map to improve the performance of the COA. The experimental results of typical nonlinear multimodal benchmark functions optimization show that spatiotemporal COA map (SCOA) improves the convergence and high efficiency compared to five hybrid optimization algorithms, which are the Monte Carlo-BFGS algorithm (MC-BFGS), Logistic map based chaos-BFGS algorithm (LM-BFGS), Skew Tent map based chaos-BFGS algorithm (STM-BFGS), COA based on the Logistic map (LM-COA) and COA based on the Skew Tent map (STM-COA).

Suggested Citation

  • Naanaa, Anis, 2015. "Fast chaotic optimization algorithm based on spatiotemporal maps for global optimization," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 402-411.
  • Handle: RePEc:eee:apmaco:v:269:y:2015:i:c:p:402-411
    DOI: 10.1016/j.amc.2015.07.111
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315010334
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.07.111?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Dixiong & Li, Gang & Cheng, Gengdong, 2007. "On the efficiency of chaos optimization algorithms for global optimization," Chaos, Solitons & Fractals, Elsevier, vol. 34(4), pages 1366-1375.
    2. Alatas, Bilal & Akin, Erhan & Ozer, A. Bedri, 2009. "Chaos embedded particle swarm optimization algorithms," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1715-1734.
    3. Hedar, Abdel-Rahman & Fukushima, Masao, 2006. "Tabu Search directed by direct search methods for nonlinear global optimization," European Journal of Operational Research, Elsevier, vol. 170(2), pages 329-349, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Felipe Cisternas-Caneo & Broderick Crawford & Ricardo Soto & Giovanni Giachetti & Álex Paz & Alvaro Peña Fritz, 2024. "Chaotic Binarization Schemes for Solving Combinatorial Optimization Problems Using Continuous Metaheuristics," Mathematics, MDPI, vol. 12(2), pages 1-39, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El-Shorbagy, M.A. & Mousa, A.A. & Nasr, S.M., 2016. "A chaos-based evolutionary algorithm for general nonlinear programming problems," Chaos, Solitons & Fractals, Elsevier, vol. 85(C), pages 8-21.
    2. Bingol, Harun & Alatas, Bilal, 2020. "Chaos based optics inspired optimization algorithms as global solution search approach," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    3. Ivorra, Benjamin & Mohammadi, Bijan & Manuel Ramos, Angel, 2015. "A multi-layer line search method to improve the initialization of optimization algorithms," European Journal of Operational Research, Elsevier, vol. 247(3), pages 711-720.
    4. Schlereth, Christian & Stepanchuk, Tanja & Skiera, Bernd, 2010. "Optimization and analysis of the profitability of tariff structures with two-part tariffs," European Journal of Operational Research, Elsevier, vol. 206(3), pages 691-701, November.
    5. Sun, Yeong-Jeu, 2009. "An exponential observer for the generalized Rossler chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2457-2461.
    6. Ahmadi, Mohamadreza & Mojallali, Hamed, 2012. "Chaotic invasive weed optimization algorithm with application to parameter estimation of chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 45(9), pages 1108-1120.
    7. Hvattum, Lars Magnus & Glover, Fred, 2009. "Finding local optima of high-dimensional functions using direct search methods," European Journal of Operational Research, Elsevier, vol. 195(1), pages 31-45, May.
    8. M. Bierlaire & M. Thémans & N. Zufferey, 2010. "A Heuristic for Nonlinear Global Optimization," INFORMS Journal on Computing, INFORMS, vol. 22(1), pages 59-70, February.
    9. Chang-Yong Lee & Dongju Lee, 2014. "Determination of initial temperature in fast simulated annealing," Computational Optimization and Applications, Springer, vol. 58(2), pages 503-522, June.
    10. Cui, Yunfei & Geng, Zhiqiang & Zhu, Qunxiong & Han, Yongming, 2017. "Review: Multi-objective optimization methods and application in energy saving," Energy, Elsevier, vol. 125(C), pages 681-704.
    11. Yu, Haiquan & Zhou, Jianxin & Si, Fengqi & Nord, Lars O., 2022. "Combined heat and power dynamic economic dispatch considering field operational characteristics of natural gas combined cycle plants," Energy, Elsevier, vol. 244(PA).
    12. Wei-Chiang Hong & Yucheng Dong & Chien-Yuan Lai & Li-Yueh Chen & Shih-Yung Wei, 2011. "SVR with Hybrid Chaotic Immune Algorithm for Seasonal Load Demand Forecasting," Energies, MDPI, vol. 4(6), pages 1-18, June.
    13. Hirsch, M.J. & Pardalos, P.M. & Resende, M.G.C., 2010. "Speeding up continuous GRASP," European Journal of Operational Research, Elsevier, vol. 205(3), pages 507-521, September.
    14. Imene Khenissi & Tawfik Guesmi & Ismail Marouani & Badr M. Alshammari & Khalid Alqunun & Saleh Albadran & Salem Rahmani & Rafik Neji, 2023. "Energy Management Strategy for Optimal Sizing and Siting of PVDG-BES Systems under Fixed and Intermittent Load Consumption Profile," Sustainability, MDPI, vol. 15(2), pages 1-28, January.
    15. Coelho, Leandro dos Santos, 2009. "Reliability–redundancy optimization by means of a chaotic differential evolution approach," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 594-602.
    16. S.-C. Horng & S.-Y. Lin, 2009. "Ordinal Optimization of G/G/1/K Polling Systems with k-Limited Service Discipline," Journal of Optimization Theory and Applications, Springer, vol. 140(2), pages 213-231, February.
    17. Salil Bharany & Sandeep Sharma & Surbhi Bhatia & Mohammad Khalid Imam Rahmani & Mohammed Shuaib & Saima Anwar Lashari, 2022. "Energy Efficient Clustering Protocol for FANETS Using Moth Flame Optimization," Sustainability, MDPI, vol. 14(10), pages 1-22, May.
    18. Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2011. "A hybrid shuffled complex evolution approach with pattern search for unconstrained optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(9), pages 1901-1909.
    19. Sultan Almotairi & Elsayed Badr & Mustafa Abdul Salam & Alshimaa Dawood, 2023. "Three Chaotic Strategies for Enhancing the Self-Adaptive Harris Hawk Optimization Algorithm for Global Optimization," Mathematics, MDPI, vol. 11(19), pages 1-27, October.
    20. Cheng, Shen & Zhao, Gaiju & Gao, Ming & Shi, Yuetao & Huang, Mingming & Yousefi, Nasser, 2021. "Optimal hybrid energy system for locomotive utilizing improved Locust Swarm optimizer," Energy, Elsevier, vol. 218(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:269:y:2015:i:c:p:402-411. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.