IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v45y2012i9p1108-1120.html
   My bibliography  Save this article

Chaotic invasive weed optimization algorithm with application to parameter estimation of chaotic systems

Author

Listed:
  • Ahmadi, Mohamadreza
  • Mojallali, Hamed

Abstract

This paper introduces a novel hybrid optimization algorithm by taking advantage of the stochastic properties of chaotic search and the invasive weed optimization (IWO) method. In order to deal with the weaknesses associated with the conventional method, the proposed chaotic invasive weed optimization (CIWO) algorithm is presented which incorporates the capabilities of chaotic search methods. The functionality of the proposed optimization algorithm is investigated through several benchmark multi-dimensional functions. Furthermore, an identification technique for chaotic systems based on the CIWO algorithm is outlined and validated by several examples. The results established upon the proposed scheme are also supplemented which demonstrate superior performance with respect to other conventional methods.

Suggested Citation

  • Ahmadi, Mohamadreza & Mojallali, Hamed, 2012. "Chaotic invasive weed optimization algorithm with application to parameter estimation of chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 45(9), pages 1108-1120.
  • Handle: RePEc:eee:chsofr:v:45:y:2012:i:9:p:1108-1120
    DOI: 10.1016/j.chaos.2012.05.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077912001233
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2012.05.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alatas, Bilal & Akin, Erhan & Ozer, A. Bedri, 2009. "Chaos embedded particle swarm optimization algorithms," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1715-1734.
    2. He, Yao-Yao & Zhou, Jian-Zhong & Xiang, Xiu-Qiao & Chen, Heng & Qin, Hui, 2009. "Comparison of different chaotic maps in particle swarm optimization algorithm for long-term cascaded hydroelectric system scheduling," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3169-3176.
    3. Zuo, X.Q. & Fan, Y.S., 2006. "A chaos search immune algorithm with its application to neuro-fuzzy controller design," Chaos, Solitons & Fractals, Elsevier, vol. 30(1), pages 94-109.
    4. Pan, Shing-Tai & Lai, Chih-Chin, 2008. "Identification of chaotic systems by neural network with hybrid learning algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 233-244.
    5. Peng, Bo & Liu, Bo & Zhang, Fu-Yi & Wang, Ling, 2009. "Differential evolution algorithm-based parameter estimation for chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2110-2118.
    6. Hasegawa, Mikio & Ikeguchi, Tohru & Aihara, Kazuyuki & Itoh, Kohji, 2002. "A novel chaotic search for quadratic assignment problems," European Journal of Operational Research, Elsevier, vol. 139(3), pages 543-556, June.
    7. Tang, Yinggan & Guan, Xinping, 2009. "Parameter estimation for time-delay chaotic system by particle swarm optimization," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1391-1398.
    8. Chang, Wei-Der, 2006. "Parameter identification of Rossler’s chaotic system by an evolutionary algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 29(5), pages 1047-1053.
    9. Bezruchko, Boris P. & Smirnov, Dmitry A. & Sysoev, Ilya V., 2006. "Identification of chaotic systems with hidden variables (modified Bock’s algorithm)," Chaos, Solitons & Fractals, Elsevier, vol. 29(1), pages 82-90.
    10. Chun-Tian Cheng & Wen-Chuan Wang & Dong-Mei Xu & K. Chau, 2008. "Optimizing Hydropower Reservoir Operation Using Hybrid Genetic Algorithm and Chaos," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(7), pages 895-909, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mihailo Micev & Martin Ćalasan & Diego Oliva, 2020. "Fractional Order PID Controller Design for an AVR System Using Chaotic Yellow Saddle Goatfish Algorithm," Mathematics, MDPI, vol. 8(7), pages 1-22, July.
    2. Mousavi, Yashar & Alfi, Alireza, 2018. "Fractional calculus-based firefly algorithm applied to parameter estimation of chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 202-215.
    3. Bezruchko, B.P. & Ponomarenko, V.I. & Smirnov, D.A. & Sysoev, I.V. & Prokhorov, M.D., 2021. "Class-oriented techniques for reconstruction of dynamics from time series," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Chaoshun & Zhou, Jianzhong & Xiao, Jian & Xiao, Han, 2012. "Parameters identification of chaotic system by chaotic gravitational search algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 45(4), pages 539-547.
    2. Coelho, Leandro dos Santos & Sauer, João Guilherme & Rudek, Marcelo, 2009. "Differential evolution optimization combined with chaotic sequences for image contrast enhancement," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 522-529.
    3. Banerjee, Amit & Abu-Mahfouz, Issam, 2014. "A comparative analysis of particle swarm optimization and differential evolution algorithms for parameter estimation in nonlinear dynamic systems," Chaos, Solitons & Fractals, Elsevier, vol. 58(C), pages 65-83.
    4. Coelho, Leandro dos Santos & Mariani, Viviana Cocco, 2009. "A novel chaotic particle swarm optimization approach using Hénon map and implicit filtering local search for economic load dispatch," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 510-518.
    5. Farzad Kiani & Sajjad Nematzadeh & Fateme Aysin Anka & Mine Afacan Findikli, 2023. "Chaotic Sand Cat Swarm Optimization," Mathematics, MDPI, vol. 11(10), pages 1-47, May.
    6. Strebel, Oliver, 2013. "A preprocessing method for parameter estimation in ordinary differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 57(C), pages 93-104.
    7. Jafari, Sajad & Ahmadi, Atefeh & Panahi, Shirin & Rajagopal, Karthikeyan, 2018. "Extreme multi-stability: When imperfection changes quality," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 182-186.
    8. Ali Thaeer Hammid & Omar I. Awad & Mohd Herwan Sulaiman & Saraswathy Shamini Gunasekaran & Salama A. Mostafa & Nallapaneni Manoj Kumar & Bashar Ahmad Khalaf & Yasir Amer Al-Jawhar & Raed Abdulkareem A, 2020. "A Review of Optimization Algorithms in Solving Hydro Generation Scheduling Problems," Energies, MDPI, vol. 13(11), pages 1-21, June.
    9. Tang, Yinggan & Guan, Xinping, 2009. "Parameter estimation of chaotic system with time-delay: A differential evolution approach," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3132-3139.
    10. Marco van Dijk & Stefanus Johannes van Vuuren & Giovanna Cavazzini & Chantel Monica Niebuhr & Alberto Santolin, 2022. "Optimizing Conduit Hydropower Potential by Determining Pareto-Optimal Trade-Off Curve," Sustainability, MDPI, vol. 14(13), pages 1-20, June.
    11. Bingol, Harun & Alatas, Bilal, 2020. "Chaos based optics inspired optimization algorithms as global solution search approach," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    12. Sysoeva, Marina V. & Sysoev, Ilya V. & Prokhorov, Mikhail D. & Ponomarenko, Vladimir I. & Bezruchko, Boris P., 2021. "Reconstruction of coupling structure in network of neuron-like oscillators based on a phase-locked loop," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    13. E A Silver, 2004. "An overview of heuristic solution methods," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(9), pages 936-956, September.
    14. Tao Bai & Lianzhou Wu & Jian-xia Chang & Qiang Huang, 2015. "Multi-Objective Optimal Operation Model of Cascade Reservoirs and Its Application on Water and Sediment Regulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2751-2770, June.
    15. Yu, Haiquan & Zhou, Jianxin & Si, Fengqi & Nord, Lars O., 2022. "Combined heat and power dynamic economic dispatch considering field operational characteristics of natural gas combined cycle plants," Energy, Elsevier, vol. 244(PA).
    16. Wei-Chiang Hong & Yucheng Dong & Chien-Yuan Lai & Li-Yueh Chen & Shih-Yung Wei, 2011. "SVR with Hybrid Chaotic Immune Algorithm for Seasonal Load Demand Forecasting," Energies, MDPI, vol. 4(6), pages 1-18, June.
    17. Ludovic Gaudard & Jeannette Gabbi & Andreas Bauder & Franco Romerio, 2016. "Long-term Uncertainty of Hydropower Revenue Due to Climate Change and Electricity Prices," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1325-1343, March.
    18. Tsai, Wen-Ping & Cheng, Chung-Lien & Uen, Tinn-Shuan & Zhou, Yanlai & Chang, Fi-John, 2019. "Drought mitigation under urbanization through an intelligent water allocation system," Agricultural Water Management, Elsevier, vol. 213(C), pages 87-96.
    19. Lisicki, Michal & Lubitz, William & Taylor, Graham W., 2016. "Optimal design and operation of Archimedes screw turbines using Bayesian optimization," Applied Energy, Elsevier, vol. 183(C), pages 1404-1417.
    20. Coelho, Leandro dos Santos, 2009. "Reliability–redundancy optimization by means of a chaotic differential evolution approach," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 594-602.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:45:y:2012:i:9:p:1108-1120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.