IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v57y2013icp93-104.html
   My bibliography  Save this article

A preprocessing method for parameter estimation in ordinary differential equations

Author

Listed:
  • Strebel, Oliver

Abstract

Parameter estimation for nonlinear differential equations is notoriously difficult because of poor or even no convergence of the nonlinear fit algorithm due to the lack of appropriate initial parameter values. This paper presents a method to gather such initial values by a simple estimation procedure. The method first determines the tangent slope and coordinates for a given solution of the ordinary differential equation (ODE) at randomly selected points in time. With these values the ODE is transformed into a system of equations, which is linear for linear appearance of the parameters in the ODE. For numerically generated data of the Lorenz attractor good estimates are obtained even at large noise levels. The method can be generalized to nonlinear parameter dependency. This case is illustrated using numerical data for a biological example. The typical problems of the method as well as their possible mitigation are discussed. Since a rigorous failure criterion of the method is missing, its results must be checked with a nonlinear fit algorithm. Therefore the method may serve as a preprocessing algorithm for nonlinear parameter fit algorithms. It can improve the convergence of the fit by providing initial parameter estimates close to optimal ones.

Suggested Citation

  • Strebel, Oliver, 2013. "A preprocessing method for parameter estimation in ordinary differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 57(C), pages 93-104.
  • Handle: RePEc:eee:chsofr:v:57:y:2013:i:c:p:93-104
    DOI: 10.1016/j.chaos.2013.08.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077913001744
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2013.08.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Qie & Wang, Ling & Liu, Bo, 2007. "Parameter estimation for chaotic systems by particle swarm optimization," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 654-661.
    2. Peng, Bo & Liu, Bo & Zhang, Fu-Yi & Wang, Ling, 2009. "Differential evolution algorithm-based parameter estimation for chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2110-2118.
    3. Bezruchko, Boris P. & Smirnov, Dmitry A. & Sysoev, Ilya V., 2006. "Identification of chaotic systems with hidden variables (modified Bock’s algorithm)," Chaos, Solitons & Fractals, Elsevier, vol. 29(1), pages 82-90.
    4. Liang, Hua & Wu, Hulin, 2008. "Parameter Estimation for Differential Equation Models Using a Framework of Measurement Error in Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1570-1583.
    5. J. O. Ramsay & G. Hooker & D. Campbell & J. Cao, 2007. "Parameter estimation for differential equations: a generalized smoothing approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(5), pages 741-796, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bezruchko, B.P. & Ponomarenko, V.I. & Smirnov, D.A. & Sysoev, I.V. & Prokhorov, M.D., 2021. "Class-oriented techniques for reconstruction of dynamics from time series," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    2. Bukh, A.V. & Kashtanova, S.V. & Shepelev, I.A., 2023. "Complex error minimization algorithm with adaptive change rate," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hulin Wu & Hongqi Xue & Arun Kumar, 2012. "Numerical Discretization-Based Estimation Methods for Ordinary Differential Equation Models via Penalized Spline Smoothing with Applications in Biomedical Research," Biometrics, The International Biometric Society, vol. 68(2), pages 344-352, June.
    2. Ahn, Kwang Woo & Chan, Kung-Sik, 2014. "Approximate conditional least squares estimation of a nonlinear state-space model via an unscented Kalman filter," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 243-254.
    3. Mu Niu & Benn Macdonald & Simon Rogers & Maurizio Filippone & Dirk Husmeier, 2018. "Statistical inference in mechanistic models: time warping for improved gradient matching," Computational Statistics, Springer, vol. 33(2), pages 1091-1123, June.
    4. Banerjee, Amit & Abu-Mahfouz, Issam, 2014. "A comparative analysis of particle swarm optimization and differential evolution algorithms for parameter estimation in nonlinear dynamic systems," Chaos, Solitons & Fractals, Elsevier, vol. 58(C), pages 65-83.
    5. Liu, Baisen & Wang, Liangliang & Nie, Yunlong & Cao, Jiguo, 2019. "Bayesian inference of mixed-effects ordinary differential equations models using heavy-tailed distributions," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 233-246.
    6. Nanshan, Muye & Zhang, Nan & Xun, Xiaolei & Cao, Jiguo, 2022. "Dynamical modeling for non-Gaussian data with high-dimensional sparse ordinary differential equations," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    7. Baisen Liu & Liangliang Wang & Yunlong Nie & Jiguo Cao, 2021. "Semiparametric Mixed-Effects Ordinary Differential Equation Models with Heavy-Tailed Distributions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 428-445, September.
    8. Zhou, Jie & Han, Lu & Liu, Sanyang, 2013. "Nonlinear mixed-effects state space models with applications to HIV dynamics," Statistics & Probability Letters, Elsevier, vol. 83(5), pages 1448-1456.
    9. Hanwen Huang, 2022. "Bayesian multi‐level mixed‐effects model for influenza dynamics," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1978-1995, November.
    10. Van Kinh Nguyen & Frank Klawonn & Rafael Mikolajczyk & Esteban A Hernandez-Vargas, 2016. "Analysis of Practical Identifiability of a Viral Infection Model," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-16, December.
    11. Tang, Yinggan & Guan, Xinping, 2009. "Parameter estimation of chaotic system with time-delay: A differential evolution approach," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3132-3139.
    12. Ahmadi, Mohamadreza & Mojallali, Hamed, 2012. "Chaotic invasive weed optimization algorithm with application to parameter estimation of chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 45(9), pages 1108-1120.
    13. Mu Niu & Joe Wandy & Rónán Daly & Simon Rogers & Dirk Husmeier, 2021. "R package for statistical inference in dynamical systems using kernel based gradient matching: KGode," Computational Statistics, Springer, vol. 36(1), pages 715-747, March.
    14. Shizhe Chen & Ali Shojaie & Daniela M. Witten, 2017. "Network Reconstruction From High-Dimensional Ordinary Differential Equations," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1697-1707, October.
    15. Ying Zhu, 2021. "Phase transitions in nonparametric regressions," Papers 2112.03626, arXiv.org, revised Nov 2023.
    16. Bin Zhu & Peter X.-K. Song & Jeremy M.G. Taylor, 2011. "Stochastic Functional Data Analysis: A Diffusion Model-Based Approach," Biometrics, The International Biometric Society, vol. 67(4), pages 1295-1304, December.
    17. Tao Lu & Yangxin Huang & Min Wang & Feng Qian, 2014. "A refined parameter estimating approach for HIV dynamic model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(8), pages 1645-1657, August.
    18. Zhou, Jie, 2015. "Detection of influential measurement for ordinary differential equation with application to HIV dynamics," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 324-332.
    19. Carey, M. & Ramsay, J.O., 2021. "Fast stable parameter estimation for linear dynamical systems," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    20. Golchi, Shirin & Campbell, David A., 2016. "Sequentially Constrained Monte Carlo," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 98-113.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:57:y:2013:i:c:p:93-104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.