IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v37y2008i1p233-244.html
   My bibliography  Save this article

Identification of chaotic systems by neural network with hybrid learning algorithm

Author

Listed:
  • Pan, Shing-Tai
  • Lai, Chih-Chin

Abstract

Based on the genetic algorithm (GA) and steepest descent method (SDM), this paper proposes a hybrid algorithm for the learning of neural networks to identify chaotic systems. The systems in question are the logistic map and the Duffing equation. Different identification schemes are used to identify both the logistic map and the Duffing equation, respectively. Simulation results show that our hybrid algorithm is more efficient than that of other methods.

Suggested Citation

  • Pan, Shing-Tai & Lai, Chih-Chin, 2008. "Identification of chaotic systems by neural network with hybrid learning algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 233-244.
  • Handle: RePEc:eee:chsofr:v:37:y:2008:i:1:p:233-244
    DOI: 10.1016/j.chaos.2006.08.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077906008605
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2006.08.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Lixiang & Yang, Yixian & Peng, Haipeng & Wang, Xiangdong, 2006. "Parameters identification of chaotic systems via chaotic ant swarm," Chaos, Solitons & Fractals, Elsevier, vol. 28(5), pages 1204-1211.
    2. Kousaka, Takuji & Ueta, Tetsushi & Ma, Yue & Kawakami, Hiroshi, 2006. "Control of chaos in a piecewise smooth nonlinear system," Chaos, Solitons & Fractals, Elsevier, vol. 27(4), pages 1019-1025.
    3. Khaki-Sedigh, A. & Yazdanpanah-Goharrizi, A., 2006. "Observer-based design of set-point tracking adaptive controllers for nonlinear chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 29(5), pages 1063-1072.
    4. Park, Ju H. & Kwon, O.M., 2006. "Guaranteed cost control of time-delay chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 27(4), pages 1011-1018.
    5. Vasegh, Nastaran & Majd, Vahid Johari, 2006. "Adaptive fuzzy synchronization of discrete-time chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 28(4), pages 1029-1036.
    6. Chang, Wei-Der, 2006. "Parameter identification of Rossler’s chaotic system by an evolutionary algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 29(5), pages 1047-1053.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zuñiga Aguilar, C.J. & Gómez-Aguilar, J.F. & Alvarado-Martínez, V.M. & Romero-Ugalde, H.M., 2020. "Fractional order neural networks for system identification," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    2. Ahmadi, Mohamadreza & Mojallali, Hamed, 2012. "Chaotic invasive weed optimization algorithm with application to parameter estimation of chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 45(9), pages 1108-1120.
    3. Shi, Xiancheng & Feng, Yucheng & Zeng, Jinsong & Chen, Kefu, 2017. "Chaos time-series prediction based on an improved recursive Levenberg–Marquardt algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 100(C), pages 57-61.
    4. Mirzaee, Hossein, 2009. "Linear combination rule in genetic algorithm for optimization of finite impulse response neural network to predict natural chaotic time series," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2681-2689.
    5. Mirzaee, Hossein, 2009. "Long-term prediction of chaotic time series with multi-step prediction horizons by a neural network with Levenberg–Marquardt learning algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1975-1979.
    6. Banerjee, Amit & Abu-Mahfouz, Issam, 2014. "A comparative analysis of particle swarm optimization and differential evolution algorithms for parameter estimation in nonlinear dynamic systems," Chaos, Solitons & Fractals, Elsevier, vol. 58(C), pages 65-83.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jiang & Si, Wenjie & Li, Huiyan, 2009. "Robust ISS-satisficing variable universe indirect fuzzy control for chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 28-38.
    2. Coelho, Leandro dos Santos & Mariani, Viviana Cocco, 2009. "A novel chaotic particle swarm optimization approach using Hénon map and implicit filtering local search for economic load dispatch," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 510-518.
    3. Coelho, Leandro dos Santos, 2008. "A quantum particle swarm optimizer with chaotic mutation operator," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1409-1418.
    4. Qasim M. Zainel & Saad M. Darwish & Murad B. Khorsheed, 2022. "Employing Quantum Fruit Fly Optimization Algorithm for Solving Three-Dimensional Chaotic Equations," Mathematics, MDPI, vol. 10(21), pages 1-21, November.
    5. Li, Chaoshun & Zhou, Jianzhong & Xiao, Jian & Xiao, Han, 2012. "Parameters identification of chaotic system by chaotic gravitational search algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 45(4), pages 539-547.
    6. Tang, Yinggan & Guan, Xinping, 2009. "Parameter estimation of chaotic system with time-delay: A differential evolution approach," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3132-3139.
    7. Ahmadi, Mohamadreza & Mojallali, Hamed, 2012. "Chaotic invasive weed optimization algorithm with application to parameter estimation of chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 45(9), pages 1108-1120.
    8. Cheng, Chun-Kai & Kuo, Hang-Hong & Hou, Yi-You & Hwang, Chi-Chuan & Liao, Teh-Lu, 2008. "Robust chaos synchronization of noise-perturbed chaotic systems with multiple time-delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3093-3102.
    9. Goharrizi, Amin Yazdanpanah & Khaki-Sedigh, Ali & Sepehri, Nariman, 2009. "Observer-based adaptive control of chaos in nonlinear discrete-time systems using time-delayed state feedback," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2448-2455.
    10. Wei-Chiang Hong & Yucheng Dong & Chien-Yuan Lai & Li-Yueh Chen & Shih-Yung Wei, 2011. "SVR with Hybrid Chaotic Immune Algorithm for Seasonal Load Demand Forecasting," Energies, MDPI, vol. 4(6), pages 1-18, June.
    11. Coelho, Leandro dos Santos, 2009. "Reliability–redundancy optimization by means of a chaotic differential evolution approach," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 594-602.
    12. Tang, Yinggan & Guan, Xinping, 2009. "Parameter estimation for time-delay chaotic system by particle swarm optimization," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1391-1398.
    13. Li, Yuying & Wen, Qiaoyan & Li, Lixiang & Peng, Haipeng, 2009. "Hybrid chaotic ant swarm optimization," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 880-889.
    14. Zhu, Hui & Li, Lixiang & Zhao, Ying & Guo, Yu & Yang, Yixian, 2009. "CAS algorithm-based optimum design of PID controller in AVR system," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 792-800.
    15. Hong, Wei-Chiang, 2010. "Application of chaotic ant swarm optimization in electric load forecasting," Energy Policy, Elsevier, vol. 38(10), pages 5830-5839, October.
    16. Asemani, Mohammad Hassan & Majd, Vahid Johari, 2009. "Stability of output-feedback DPDC-based fuzzy synchronization of chaotic systems via LMI," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1126-1135.
    17. Vasegh, Nastaran & Majd, Vahid Johari, 2009. "Fuzzy model-based adaptive synchronization of time-delayed chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1484-1492.
    18. Chen, Bing & Liu, Xiaoping & Tong, Shaocheng, 2008. "Robust fuzzy control of nonlinear systems with input delay," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 894-901.
    19. Coelho, Leandro dos Santos & Sauer, João Guilherme & Rudek, Marcelo, 2009. "Differential evolution optimization combined with chaotic sequences for image contrast enhancement," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 522-529.
    20. Lien, Chang-Hua, 2007. "Non-fragile guaranteed cost control for uncertain neutral dynamic systems with time-varying delays in state and control input," Chaos, Solitons & Fractals, Elsevier, vol. 31(4), pages 889-899.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:37:y:2008:i:1:p:233-244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.