GSA-KAN: A Hybrid Model for Short-Term Traffic Forecasting
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Ming Jiang & Zhiwei Liu, 2023. "Traffic Flow Prediction Based on Dynamic Graph Spatial-Temporal Neural Network," Mathematics, MDPI, vol. 11(11), pages 1-16, May.
- Karamichailidou, Despina & Kaloutsa, Vasiliki & Alexandridis, Alex, 2021. "Wind turbine power curve modeling using radial basis function neural networks and tabu search," Renewable Energy, Elsevier, vol. 163(C), pages 2137-2152.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Cheng, Biyi & Du, Jianjun & Yao, Yingxue, 2022. "Machine learning methods to assist structure design and optimization of Dual Darrieus Wind Turbines," Energy, Elsevier, vol. 244(PA).
- Kai Zhang & Zixuan Chu & Jiping Xing & Honggang Zhang & Qixiu Cheng, 2023. "Urban Traffic Flow Congestion Prediction Based on a Data-Driven Model," Mathematics, MDPI, vol. 11(19), pages 1-20, September.
- Farah, Shahid & David A, Wood & Humaira, Nisar & Aneela, Zameer & Steffen, Eger, 2022. "Short-term multi-hour ahead country-wide wind power prediction for Germany using gated recurrent unit deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Hu, Yue & Liu, Hanjing & Wu, Senzhen & Zhao, Yuan & Wang, Zhijin & Liu, Xiufeng, 2024. "Temporal collaborative attention for wind power forecasting," Applied Energy, Elsevier, vol. 357(C).
- Papadimitrakis, M. & Giamarelos, N. & Stogiannos, M. & Zois, E.N. & Livanos, N.A.-I. & Alexandridis, A., 2021. "Metaheuristic search in smart grid: A review with emphasis on planning, scheduling and power flow optimization applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
- Wen, Yi & Kamranzad, Bahareh & Lin, Pengzhi, 2021. "Assessment of long-term offshore wind energy potential in the south and southeast coasts of China based on a 55-year dataset," Energy, Elsevier, vol. 224(C).
- Hanafi, Saïd & Wang, Yang & Glover, Fred & Yang, Wei & Hennig, Rick, 2023. "Tabu search exploiting local optimality in binary optimization," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1037-1055.
- Li, Tenghui & Liu, Xiaolei & Lin, Zi & Morrison, Rory, 2022. "Ensemble offshore Wind Turbine Power Curve modelling – An integration of Isolation Forest, fast Radial Basis Function Neural Network, and metaheuristic algorithm," Energy, Elsevier, vol. 239(PD).
- Wang, Peng & Li, Yanting & Zhang, Guangyao, 2023. "Probabilistic power curve estimation based on meteorological factors and density LSTM," Energy, Elsevier, vol. 269(C).
- Zou, Runmin & Yang, Jiaxin & Wang, Yun & Liu, Fang & Essaaidi, Mohamed & Srinivasan, Dipti, 2021. "Wind turbine power curve modeling using an asymmetric error characteristic-based loss function and a hybrid intelligent optimizer," Applied Energy, Elsevier, vol. 304(C).
- Saeedreza Jadidi & Hamed Badihi & Youmin Zhang, 2021. "Fault-Tolerant Cooperative Control of Large-Scale Wind Farms and Wind Farm Clusters," Energies, MDPI, vol. 14(21), pages 1-29, November.
- Davide Astolfi & Ravi Pandit & Andrea Lombardi & Ludovico Terzi, 2022. "Multivariate Data-Driven Models for Wind Turbine Power Curves including Sub-Component Temperatures," Energies, MDPI, vol. 16(1), pages 1-18, December.
- Pengfei Zhang & Zuoxia Xing & Shanshan Guo & Mingyang Chen & Qingqi Zhao, 2022. "A New Wind Turbine Power Performance Assessment Approach: SCADA to Power Model Based with Regression-Kriging," Energies, MDPI, vol. 15(13), pages 1-15, July.
- Wen-Jie Liu & Yu-Ting Bai & Xue-Bo Jin & Ting-Li Su & Jian-Lei Kong, 2022. "Adaptive Broad Echo State Network for Nonstationary Time Series Forecasting," Mathematics, MDPI, vol. 10(17), pages 1-21, September.
- Li, Yanting & Wang, Peng & Wu, Zhenyu & Su, Yan, 2024. "Collaborative monitoring of wind turbine performance based on probabilistic power curve comparison," Renewable Energy, Elsevier, vol. 231(C).
- Wenguang Chai & Yuexin Zheng & Lin Tian & Jing Qin & Teng Zhou, 2023. "GA-KELM: Genetic-Algorithm-Improved Kernel Extreme Learning Machine for Traffic Flow Forecasting," Mathematics, MDPI, vol. 11(16), pages 1-15, August.
- Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
- Sara Carcangiu & Alessandra Fanni & Augusto Montisci, 2022. "Optimal Design of an Inductive MHD Electric Generator," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
- Qian, Guo-Wei & Ishihara, Takeshi, 2022. "A novel probabilistic power curve model to predict the power production and its uncertainty for a wind farm over complex terrain," Energy, Elsevier, vol. 261(PA).
More about this item
Keywords
traffic flow theory; intelligent transportation; Kolmogorov–Arnold networks; gravitational search algorithm;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:7:p:1158-:d:1625221. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.