IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i5p883-d1606941.html
   My bibliography  Save this article

Linear Model and Gradient Feature Elimination Algorithm Based on Seasonal Decomposition for Time Series Forecasting

Author

Listed:
  • Sheng-Tzong Cheng

    (Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan 701, Taiwan)

  • Ya-Jin Lyu

    (Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan 701, Taiwan)

  • Yi-Hong Lin

    (Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan 701, Taiwan)

Abstract

In the wave of digital transformation and Industry 4.0, accurate time series forecasting has become critical across industries such as manufacturing, energy, and finance. However, while deep learning models offer high predictive accuracy, their lack of interpretability often undermines decision-makers’ trust. This study proposes a linear time series model architecture based on seasonal decomposition. The model effectively captures trends and seasonality using an additive decomposition, chosen based on initial data visualization, indicating stable seasonal variations. An augmented feature generator is introduced to enhance predictive performance by generating features such as differences, rolling statistics, and moving averages. Furthermore, we propose a gradient-based feature importance method to improve interpretability and implement a gradient feature elimination algorithm to reduce noise and enhance model accuracy. The approach is validated on multiple datasets, including order demand, energy load, and solar radiation, demonstrating its applicability to diverse time series forecasting tasks.

Suggested Citation

  • Sheng-Tzong Cheng & Ya-Jin Lyu & Yi-Hong Lin, 2025. "Linear Model and Gradient Feature Elimination Algorithm Based on Seasonal Decomposition for Time Series Forecasting," Mathematics, MDPI, vol. 13(5), pages 1-29, March.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:5:p:883-:d:1606941
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/5/883/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/5/883/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pengpeng Jiao & Ruimin Li & Tuo Sun & Zenghao Hou & Amir Ibrahim, 2016. "Three Revised Kalman Filtering Models for Short-Term Rail Transit Passenger Flow Prediction," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-10, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Qian & Liu, Xiaoxiao & Spurgeon, Sarah & Yu, Dingli, 2021. "A two-layer modelling framework for predicting passenger flow on trains: A case study of London underground trains," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 119-139.
    2. Xianwang Li & Zhongxiang Huang & Saihu Liu & Jinxin Wu & Yuxiang Zhang, 2023. "Short-Term Subway Passenger Flow Prediction Based on Time Series Adaptive Decomposition and Multi-Model Combination (IVMD-SE-MSSA)," Sustainability, MDPI, vol. 15(10), pages 1-30, May.
    3. Yang, Xin & Xue, Qiuchi & Ding, Meiling & Wu, Jianjun & Gao, Ziyou, 2021. "Short-term prediction of passenger volume for urban rail systems: A deep learning approach based on smart-card data," International Journal of Production Economics, Elsevier, vol. 231(C).
    4. Li, Peng & Wu, Weitiao & Pei, Xiangjing, 2023. "A separate modelling approach for short-term bus passenger flow prediction based on behavioural patterns: A hybrid decision tree method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 616(C).
    5. Fenling Feng & Zhaohui Zou & Chengguang Liu & Qianran Zhou & Chang Liu, 2023. "Forecast of Short-Term Passenger Flow in Multi-Level Rail Transit Network Based on a Multi-Task Learning Model," Sustainability, MDPI, vol. 15(4), pages 1-17, February.
    6. Lu Zeng & Zinuo Li & Jie Yang & Xinyue Xu, 2022. "CEEMDAN-IPSO-LSTM: A Novel Model for Short-Term Passenger Flow Prediction in Urban Rail Transit Systems," IJERPH, MDPI, vol. 19(24), pages 1-19, December.
    7. Yu Zhang & Xiaodan Wang & Jingjing Xie & Yun Bai, 2024. "Comparative analysis of deep-learning-based models for hourly bus passenger flow forecasting," Transportation, Springer, vol. 51(5), pages 1759-1784, October.
    8. Sun, He & Cabras, Stefano, 2023. "Deep Learning and Bayesian Calibration Approach to Hourly Passenger Occupancy Prediction in Beijing Metro: A Study Exploiting Cellular Data and Metro Conditions," DES - Working Papers. Statistics and Econometrics. WS 38783, Universidad Carlos III de Madrid. Departamento de Estadística.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:5:p:883-:d:1606941. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.