IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/38783.html
   My bibliography  Save this paper

Deep Learning and Bayesian Calibration Approach to Hourly Passenger Occupancy Prediction in Beijing Metro: A Study Exploiting Cellular Data and Metro Conditions

Author

Listed:
  • Sun, He
  • Cabras, Stefano

Abstract

In In burgeoning urban landscapes, the proliferation of the populace necessitates swift and accurate urban transit solutions to cater to the citizens' commuting requirements. A pivotal aspect of fostering optimized traffic management and ensuring resilient responses to unanticipated passenger surges is precisely forecasting hourly occupancy levels within urban subway systems. This study embarks on delineating a two-tiered model designed to address this imperative adeptly: 1. Preliminary Phase - Employing a Feed Forward Neural Network (FFNN): In the initial phase, a Feed Forward Neural Network (FFNN) is employed to gauge the occupancy levels across various subway stations. The FFNN, a class of artificial neural networks, is well-suited for this task because it can learn from the data and make predictions or decisions without being explicitly programmed to perform the task. Through a series of interconnected nodes, known as neurons, arranged in layers, the FFNN processes the input data, adjusts its weights based on the error of its predictions, and optimizes the network for accurate forecasting. For the random process of occupation levels in time and space, this phase encapsulates the so-called process filtration, wherein the underlying patterns and dynamics of subway occupancy are captured and represented in a structured format, ready for subsequent analysis. The estimates garnered from this phase are pivotal and form the foundation for the subsequent modelling stage. 2. Subsequent Phase - Implementing a Bayesian Proportional-Odds Model with Hourly Random Effects: With the estimates from the FFNN at disposal, the study transitions to the subsequent phase wherein a Bayesian Proportional-Odds Model is utilized. This model is particularly adept for scenarios where the response variable is ordinal, as in the case of occupancy levels (Low, Medium, High). The Bayesian framework, underpinned by the principles of probability, facilitates the incorporation of prior probabilities on model parameters and updates this knowledge with observed data to make informed predictions. The unique feature of this model is the incorporation of a random effect for hours, which acknowledges the inherent variability across different hours of the day. This is paramount in urban transit systems where passenger influx varies significantly with the hour. The synergy of these two models facilitates calibrated estimations of occupancy levels, both conditionally (relative to the sample) and unconditionally (on a detached test set). This dual-phase methodology furnishes analysts with a robust and reliable insight into the quality of predictions propounded by this model. This, in turn, avails a data-driven foundation for making informed decisions in real-time traffic management, emergency response planning, and overall operational optimization of urban subway systems. The model expounded in this study is presently under scrutiny for potential deployment by the Beijing Metro Group Ltd. This initiative reflects a practical stride towards embracing sophisticated analytical models to ameliorate urban transit management, thereby contributing to the broader objective of fostering sustainable and efficient urban living environments amidst the surging urban populace.

Suggested Citation

  • Sun, He & Cabras, Stefano, 2023. "Deep Learning and Bayesian Calibration Approach to Hourly Passenger Occupancy Prediction in Beijing Metro: A Study Exploiting Cellular Data and Metro Conditions," DES - Working Papers. Statistics and Econometrics. WS 38783, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:38783
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/bitstream/handle/10016/38783/ws202312.pdf?sequence=1
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pengpeng Jiao & Ruimin Li & Tuo Sun & Zenghao Hou & Amir Ibrahim, 2016. "Three Revised Kalman Filtering Models for Short-Term Rail Transit Passenger Flow Prediction," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-10, March.
    2. Petris, Giovanni, 2010. "An R Package for Dynamic Linear Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 36(i12).
    3. Richard A. Davis & Konstantinos Fokianos & Scott H. Holan & Harry Joe & James Livsey & Robert Lund & Vladas Pipiras & Nalini Ravishanker, 2021. "Count Time Series: A Methodological Review," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(535), pages 1533-1547, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huaping Chen & Qi Li & Fukang Zhu, 2023. "A covariate-driven beta-binomial integer-valued GARCH model for bounded counts with an application," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(7), pages 805-826, October.
    2. Fokianos, Konstantinos & Fried, Roland & Kharin, Yuriy & Voloshko, Valeriy, 2022. "Statistical analysis of multivariate discrete-valued time series," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    3. Shao, Wei & Guo, Guangbao & Meng, Fanyu & Jia, Shuqin, 2013. "An efficient proposal distribution for Metropolis–Hastings using a B-splines technique," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 465-478.
    4. Andrés Ramírez Hassan & Javier Pantoja Robayo, 2013. "Co-movements between Latin American and U.S. stock markets: convergence after the financial crisis," Documentos de Trabajo de Valor Público 10931, Universidad EAFIT.
    5. Cabral, Celso Rômulo Barbosa & da-Silva, Cibele Queiroz & Migon, Helio S., 2014. "A dynamic linear model with extended skew-normal for the initial distribution of the state parameter," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 64-80.
    6. Zhang, Qian & Liu, Xiaoxiao & Spurgeon, Sarah & Yu, Dingli, 2021. "A two-layer modelling framework for predicting passenger flow on trains: A case study of London underground trains," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 119-139.
    7. Karmakar, Sayar & Gupta, Rangan & Cepni, Oguzhan & Rognone, Lavinia, 2023. "Climate risks and predictability of the trading volume of gold: Evidence from an INGARCH model," Resources Policy, Elsevier, vol. 82(C).
    8. Xianwang Li & Zhongxiang Huang & Saihu Liu & Jinxin Wu & Yuxiang Zhang, 2023. "Short-Term Subway Passenger Flow Prediction Based on Time Series Adaptive Decomposition and Multi-Model Combination (IVMD-SE-MSSA)," Sustainability, MDPI, vol. 15(10), pages 1-30, May.
    9. Yang, Kai & Yu, Xinyang & Zhang, Qingqing & Dong, Xiaogang, 2022. "On MCMC sampling in self-exciting integer-valued threshold time series models," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
    10. Yang, Xin & Xue, Qiuchi & Ding, Meiling & Wu, Jianjun & Gao, Ziyou, 2021. "Short-term prediction of passenger volume for urban rail systems: A deep learning approach based on smart-card data," International Journal of Production Economics, Elsevier, vol. 231(C).
    11. Li, Peng & Wu, Weitiao & Pei, Xiangjing, 2023. "A separate modelling approach for short-term bus passenger flow prediction based on behavioural patterns: A hybrid decision tree method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 616(C).
    12. Fenling Feng & Zhaohui Zou & Chengguang Liu & Qianran Zhou & Chang Liu, 2023. "Forecast of Short-Term Passenger Flow in Multi-Level Rail Transit Network Based on a Multi-Task Learning Model," Sustainability, MDPI, vol. 15(4), pages 1-17, February.
    13. Ruiz-Cárdenas, Ramiro & Krainski, Elias T. & Rue, Håvard, 2012. "Direct fitting of dynamic models using integrated nested Laplace approximations — INLA," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1808-1828.
    14. Stefano Cabras, 2021. "A Bayesian-Deep Learning Model for Estimating COVID-19 Evolution in Spain," Mathematics, MDPI, vol. 9(22), pages 1-18, November.
    15. Lu Zeng & Zinuo Li & Jie Yang & Xinyue Xu, 2022. "CEEMDAN-IPSO-LSTM: A Novel Model for Short-Term Passenger Flow Prediction in Urban Rail Transit Systems," IJERPH, MDPI, vol. 19(24), pages 1-19, December.
    16. Rostami-Tabar, Bahman & Disney, Stephen M., 2023. "On the order-up-to policy with intermittent integer demand and logically consistent forecasts," International Journal of Production Economics, Elsevier, vol. 257(C).
    17. Ekici, Oya & Nemlioğlu, Karun, 2017. "Emerging economies’ short-term private external debt as evidence of economic crisis," Journal of Policy Modeling, Elsevier, vol. 39(2), pages 232-246.
    18. Peter Knaus & Angela Bitto-Nemling & Annalisa Cadonna & Sylvia Fruhwirth-Schnatter, 2019. "Shrinkage in the Time-Varying Parameter Model Framework Using the R Package shrinkTVP," Papers 1907.07065, arXiv.org, revised Nov 2020.
    19. Kleyton da Costa & Felipe Leite Coelho da Silva & Josiane da Silva Cordeiro Coelho & Andr'e de Melo Modenesi, 2020. "A Systematic Comparison of Forecasting for Gross Domestic Product in an Emergent Economy," Papers 2010.13259, arXiv.org, revised Mar 2022.
    20. Cabras, Stefano & Sunhe, Flor, 2021. "A Bayesian Spatio-temporal model for predicting passengers' occupancy at Beijing Metro," DES - Working Papers. Statistics and Econometrics. WS 33787, Universidad Carlos III de Madrid. Departamento de Estadística.

    More about this item

    Keywords

    Bayesian Model Calibration;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:38783. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.