IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i5p876-d1606403.html
   My bibliography  Save this article

A Column-Generation-Based Exact Algorithm to Solve the Full-Truckload Vehicle-Routing Problem

Author

Listed:
  • Toygar Emre

    (Department of Industrial Engineering, Faculty of Engineering, Cukurova University, Saricam 01330, Adana, Turkey)

  • Rizvan Erol

    (Department of Industrial Engineering, Faculty of Engineering, Cukurova University, Saricam 01330, Adana, Turkey)

Abstract

This study addresses a specialized variant of the full-truckload delivery problem inspired by a Turkish logistics firm that operates in the liquid transportation sector. An exact algorithm is proposed for the relevant problem, to which no exact approach has been applied before. Multiple customer and trailer types, as well as washing operations, are introduced simultaneously during the exact solution process, bringing new aspects to the exact algorithm approach among full-truckload systems in the literature. The objective is to minimize transportation costs while addressing constraints related to multiple time windows, trailer types, customer types, product types, a heterogeneous fleet with limited capacity, multiple departure points, and various actions such as loading, unloading, and washing. Additionally, the elimination or reduction of waiting times is provided along transportation routes. In order to achieve optimal solutions, an exact algorithm based on the column generation method is proposed. A route-based insertion algorithm is also employed for initial routes/columns. Regarding the acquisition of integral solutions in the exact algorithm, both dynamic and static sets of valid inequalities are incorporated. A label-setting algorithm is used to generate columns within the exact algorithm by being accelerated through bi-directional search, ng-route relaxation, subproblem selection, and heuristic column generation. Due to the problem-dependent structure of the column generation method and acceleration techniques, a tailored version of them is included in the solution process. Performance analysis, which was conducted using artificial input sets based on the real-life operations of the logistics firm, demonstrates that optimality gaps of less than 1% can be attained within reasonable times even for large-scale instances relevant to the industry, such as 120 customers, 8 product and 8 trailer types, 4 daily time windows, and 40 departure points.

Suggested Citation

  • Toygar Emre & Rizvan Erol, 2025. "A Column-Generation-Based Exact Algorithm to Solve the Full-Truckload Vehicle-Routing Problem," Mathematics, MDPI, vol. 13(5), pages 1-32, March.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:5:p:876-:d:1606403
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/5/876/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/5/876/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Grigorios D. Konstantakopoulos & Sotiris P. Gayialis & Evripidis P. Kechagias, 2022. "Vehicle routing problem and related algorithms for logistics distribution: a literature review and classification," Operational Research, Springer, vol. 22(3), pages 2033-2062, July.
    2. Martin Savelsbergh, 1997. "A Branch-and-Price Algorithm for the Generalized Assignment Problem," Operations Research, INFORMS, vol. 45(6), pages 831-841, December.
    3. Guy Desaulniers & François Lessard & Ahmed Hadjar, 2008. "Tabu Search, Partial Elementarity, and Generalized k -Path Inequalities for the Vehicle Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 42(3), pages 387-404, August.
    4. Marius M. Solomon, 1987. "Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints," Operations Research, INFORMS, vol. 35(2), pages 254-265, April.
    5. Baller, Reinhard & Fontaine, Pirmin & Minner, Stefan & Lai, Zhen, 2022. "Optimizing automotive inbound logistics: A mixed-integer linear programming approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
    6. Brian Kallehauge & Jesper Larsen & Oli B.G. Madsen & Marius M. Solomon, 2005. "Vehicle Routing Problem with Time Windows," Springer Books, in: Guy Desaulniers & Jacques Desrosiers & Marius M. Solomon (ed.), Column Generation, chapter 0, pages 67-98, Springer.
    7. George B. Dantzig & Philip Wolfe, 1960. "Decomposition Principle for Linear Programs," Operations Research, INFORMS, vol. 8(1), pages 101-111, February.
    8. Ghorpade, Tejas & Rangaraj, Narayan, 2022. "Order first split second heuristic for alternative routing strategy for freight railways," Transport Policy, Elsevier, vol. 124(C), pages 139-148.
    9. Luciano Costa & Claudio Contardo & Guy Desaulniers, 2019. "Exact Branch-Price-and-Cut Algorithms for Vehicle Routing," Transportation Science, INFORMS, vol. 53(4), pages 946-985, July.
    10. Roberto Baldacci & Aristide Mingozzi & Roberto Roberti, 2011. "New Route Relaxation and Pricing Strategies for the Vehicle Routing Problem," Operations Research, INFORMS, vol. 59(5), pages 1269-1283, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhusiri, Narath & Qureshi, Ali Gul & Taniguchi, Eiichi, 2014. "The trade-off between fixed vehicle costs and time-dependent arrival penalties in a routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 1-22.
    2. Spliet, Remy & Desaulniers, Guy, 2015. "The discrete time window assignment vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 244(2), pages 379-391.
    3. Yin, Yunqiang & Li, Dongwei & Wang, Dujuan & Ignatius, Joshua & Cheng, T.C.E. & Wang, Sutong, 2023. "A branch-and-price-and-cut algorithm for the truck-based drone delivery routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1125-1144.
    4. Liu, Yiming & Yu, Yang & Baldacci, Roberto & Tang, Jiafu & Sun, Wei, 2025. "Optimizing carbon emissions in green logistics for time-dependent routing," Transportation Research Part B: Methodological, Elsevier, vol. 192(C).
    5. Liu, Yiming & Roberto, Baldacci & Zhou, Jianwen & Yu, Yang & Zhang, Yu & Sun, Wei, 2023. "Efficient feasibility checks and an adaptive large neighborhood search algorithm for the time-dependent green vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 310(1), pages 133-155.
    6. Nikolaus Furian & Michael O’Sullivan & Cameron Walker & Eranda Çela, 2021. "A machine learning-based branch and price algorithm for a sampled vehicle routing problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(3), pages 693-732, September.
    7. Qiuping Ni & Yuanxiang Tang, 2023. "A Bibliometric Visualized Analysis and Classification of Vehicle Routing Problem Research," Sustainability, MDPI, vol. 15(9), pages 1-37, April.
    8. Christian Tilk & Ann-Kathrin Rothenbächer & Timo Gschwind & Stefan Irnich, 2016. "Asymmetry Helps: Dynamic Half-Way Points for Solving Shortest Path Problems with Resource Constraints Faster," Working Papers 1615, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    9. Jans, Raf, 2010. "Classification of Dantzig-Wolfe reformulations for binary mixed integer programming problems," European Journal of Operational Research, Elsevier, vol. 204(2), pages 251-254, July.
    10. Tilk, Christian & Rothenbächer, Ann-Kathrin & Gschwind, Timo & Irnich, Stefan, 2017. "Asymmetry matters: Dynamic half-way points in bidirectional labeling for solving shortest path problems with resource constraints faster," European Journal of Operational Research, Elsevier, vol. 261(2), pages 530-539.
    11. Miao Yu & Viswanath Nagarajan & Siqian Shen, 2022. "Improving Column Generation for Vehicle Routing Problems via Random Coloring and Parallelization," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 953-973, March.
    12. Stefan Faldum & Sarah Machate & Timo Gschwind & Stefan Irnich, 2024. "Partial dominance in branch-price-and-cut algorithms for vehicle routing and scheduling problems with a single-segment tradeoff," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(4), pages 1063-1097, December.
    13. Borzou Rostami & Guy Desaulniers & Fausto Errico & Andrea Lodi, 2021. "Branch-Price-and-Cut Algorithms for the Vehicle Routing Problem with Stochastic and Correlated Travel Times," Operations Research, INFORMS, vol. 69(2), pages 436-455, March.
    14. Yiming Liu & Yang Yu & Yu Zhang & Roberto Baldacci & Jiafu Tang & Xinggang Luo & Wei Sun, 2023. "Branch-Cut-and-Price for the Time-Dependent Green Vehicle Routing Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 14-30, January.
    15. Theodore Athanasopoulos & Ioannis Minis, 2013. "Efficient techniques for the multi-period vehicle routing problem with time windows within a branch and price framework," Annals of Operations Research, Springer, vol. 206(1), pages 1-22, July.
    16. Gschwind, Timo & Bianchessi, Nicola & Irnich, Stefan, 2019. "Stabilized branch-price-and-cut for the commodity-constrained split delivery vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 278(1), pages 91-104.
    17. Guy Desaulniers & François Lessard & Ahmed Hadjar, 2008. "Tabu Search, Partial Elementarity, and Generalized k -Path Inequalities for the Vehicle Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 42(3), pages 387-404, August.
    18. Errico, F. & Desaulniers, G. & Gendreau, M. & Rei, W. & Rousseau, L.-M., 2016. "A priori optimization with recourse for the vehicle routing problem with hard time windows and stochastic service times," European Journal of Operational Research, Elsevier, vol. 249(1), pages 55-66.
    19. Yin, Yunqiang & Yang, Yongjian & Yu, Yugang & Wang, Dujuan & Cheng, T.C.E., 2023. "Robust vehicle routing with drones under uncertain demands and truck travel times in humanitarian logistics," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    20. Martin Wölck & Stephan Meisel, 2022. "Branch-and-Price Approaches for Real-Time Vehicle Routing with Picking, Loading, and Soft Time Windows," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2192-2211, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:5:p:876-:d:1606403. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.