IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v236y2014i2p736-747.html
   My bibliography  Save this article

Fleet routing position-based model for inventory pickup under production shutdown

Author

Listed:
  • Edirisinghe, N.C.P.
  • James, R.J.W.

Abstract

This paper addresses the problem of collecting inventory of production at various plants having limited storage capacity, violation of which forces plant shutdowns. The production at plants is continuous (with known rates) and a fleet of vehicles need to be scheduled to transport the commodity from plants to a central storage or depot, possibly making multiple pickups at a given plant to avoid shutdown. One operational objective is to achieve the highest possible rate of product retrieval at the depot, relative to the total travel time of the fleet. This problem is a variant (and generalization) of the inventory routing problem. The motivating application for this paper is barge scheduling for oil pickup from off-shore oil-producing platforms with limited holding capacity, where shutdowns are prohibitively expensive. We develop a new model that is fundamentally different from standard node-arc or path formulations in the literature. The proposed model is based on assigning a unique position to each vehicle visit at a node in a chronological sequence of vehicle-nodal visits. This approach leads to substantial flexibility in modeling multiple visits to a node using multiple vehicles, while controlling the number of binary decision variables. Consequently, our position-based model solves larger model instances significantly more efficiently than the node-arc counterpart. Computational experience of the proposed model with the off-shore barge scheduling application is reported.

Suggested Citation

  • Edirisinghe, N.C.P. & James, R.J.W., 2014. "Fleet routing position-based model for inventory pickup under production shutdown," European Journal of Operational Research, Elsevier, vol. 236(2), pages 736-747.
  • Handle: RePEc:eee:ejores:v:236:y:2014:i:2:p:736-747
    DOI: 10.1016/j.ejor.2013.12.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221713010230
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2013.12.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ann Melissa Campbell & Martin W. P. Savelsbergh, 2004. "A Decomposition Approach for the Inventory-Routing Problem," Transportation Science, INFORMS, vol. 38(4), pages 488-502, November.
    2. Dumas, Yvan & Desrosiers, Jacques & Soumis, Francois, 1991. "The pickup and delivery problem with time windows," European Journal of Operational Research, Elsevier, vol. 54(1), pages 7-22, September.
    3. Martin Desrochers & Jacques Desrosiers & Marius Solomon, 1992. "A New Optimization Algorithm for the Vehicle Routing Problem with Time Windows," Operations Research, INFORMS, vol. 40(2), pages 342-354, April.
    4. Guy Desaulniers & François Lessard & Ahmed Hadjar, 2008. "Tabu Search, Partial Elementarity, and Generalized k -Path Inequalities for the Vehicle Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 42(3), pages 387-404, August.
    5. Raa, Birger & Aghezzaf, El-Houssaine, 2009. "A practical solution approach for the cyclic inventory routing problem," European Journal of Operational Research, Elsevier, vol. 192(2), pages 429-441, January.
    6. N H Moin & S Salhi, 2007. "Inventory routing problems: a logistical overview," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(9), pages 1185-1194, September.
    7. Al-Khayyal, Faiz & Hwang, Seung-June, 2007. "Inventory constrained maritime routing and scheduling for multi-commodity liquid bulk, Part I: Applications and model," European Journal of Operational Research, Elsevier, vol. 176(1), pages 106-130, January.
    8. Lee, Chi-Guhn & Epelman, Marina A. & White III, Chelsea C. & Bozer, Yavuz A., 2006. "A shortest path approach to the multiple-vehicle routing problem with split pick-ups," Transportation Research Part B: Methodological, Elsevier, vol. 40(4), pages 265-284, May.
    9. Mads Jepsen & Bjørn Petersen & Simon Spoorendonk & David Pisinger, 2008. "Subset-Row Inequalities Applied to the Vehicle-Routing Problem with Time Windows," Operations Research, INFORMS, vol. 56(2), pages 497-511, April.
    10. Marius M. Solomon, 1987. "Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints," Operations Research, INFORMS, vol. 35(2), pages 254-265, April.
    11. Ferland, Jacques A. & Fortin, Luc, 1989. "Vehicles scheduling with sliding time windows," European Journal of Operational Research, Elsevier, vol. 38(2), pages 213-226, January.
    12. Azi, Nabila & Gendreau, Michel & Potvin, Jean-Yves, 2010. "An exact algorithm for a vehicle routing problem with time windows and multiple use of vehicles," European Journal of Operational Research, Elsevier, vol. 202(3), pages 756-763, May.
    13. Brian Kallehauge & Jesper Larsen & Oli B.G. Madsen & Marius M. Solomon, 2005. "Vehicle Routing Problem with Time Windows," Springer Books, in: Guy Desaulniers & Jacques Desrosiers & Marius M. Solomon (ed.), Column Generation, chapter 0, pages 67-98, Springer.
    14. A. W. J. Kolen & A. H. G. Rinnooy Kan & H. W. J. M. Trienekens, 1987. "Vehicle Routing with Time Windows," Operations Research, INFORMS, vol. 35(2), pages 266-273, April.
    15. Marielle Christiansen, 1999. "Decomposition of a Combined Inventory and Time Constrained Ship Routing Problem," Transportation Science, INFORMS, vol. 33(1), pages 3-16, February.
    16. M. W. P. Savelsbergh & M. Sol, 1995. "The General Pickup and Delivery Problem," Transportation Science, INFORMS, vol. 29(1), pages 17-29, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhen, Lu & Wang, Kai & Wang, Shuaian & Qu, Xiaobo, 2018. "Tug scheduling for hinterland barge transport: A branch-and-price approach," European Journal of Operational Research, Elsevier, vol. 265(1), pages 119-132.
    2. Archetti, Claudia & Speranza, M. Grazia & Boccia, Maurizio & Sforza, Antonio & Sterle, Claudio, 2020. "A branch-and-cut algorithm for the inventory routing problem with pickups and deliveries," European Journal of Operational Research, Elsevier, vol. 282(3), pages 886-895.
    3. Agra, Agostinho & Christiansen, Marielle & Wolsey, Laurence, 2022. "Improved models for a single vehicle continuous-time inventory routing problem with pickups and deliveries," European Journal of Operational Research, Elsevier, vol. 297(1), pages 164-179.
    4. Archetti, Claudia & Christiansen, Marielle & Grazia Speranza, M., 2018. "Inventory routing with pickups and deliveries," European Journal of Operational Research, Elsevier, vol. 268(1), pages 314-324.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefan Ropke & Jean-François Cordeau, 2009. "Branch and Cut and Price for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 43(3), pages 267-286, August.
    2. Jeffrey W. Ohlmann & Michael J. Fry & Barrett W. Thomas, 2008. "Route Design for Lean Production Systems," Transportation Science, INFORMS, vol. 42(3), pages 352-370, August.
    3. Theodore Athanasopoulos & Ioannis Minis, 2013. "Efficient techniques for the multi-period vehicle routing problem with time windows within a branch and price framework," Annals of Operations Research, Springer, vol. 206(1), pages 1-22, July.
    4. Vis, Iris F.A., 2006. "Survey of research in the design and control of automated guided vehicle systems," European Journal of Operational Research, Elsevier, vol. 170(3), pages 677-709, May.
    5. Bhusiri, Narath & Qureshi, Ali Gul & Taniguchi, Eiichi, 2014. "The trade-off between fixed vehicle costs and time-dependent arrival penalties in a routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 1-22.
    6. Roberto Baldacci & Aristide Mingozzi & Roberto Roberti, 2011. "New Route Relaxation and Pricing Strategies for the Vehicle Routing Problem," Operations Research, INFORMS, vol. 59(5), pages 1269-1283, October.
    7. Baldacci, Roberto & Mingozzi, Aristide & Roberti, Roberto, 2012. "Recent exact algorithms for solving the vehicle routing problem under capacity and time window constraints," European Journal of Operational Research, Elsevier, vol. 218(1), pages 1-6.
    8. Timo Gschwind & Stefan Irnich, 2012. "Effective Handling of Dynamic Time Windows and Synchronization with Precedences for Exact Vehicle Routing," Working Papers 1211, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    9. Diana, Marco & Dessouky, Maged M., 2004. "A new regret insertion heuristic for solving large-scale dial-a-ride problems with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 38(6), pages 539-557, July.
    10. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2018. "Vehicle routing problems with multiple trips," Annals of Operations Research, Springer, vol. 271(1), pages 127-159, December.
    11. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2016. "Vehicle routing problems with multiple trips," 4OR, Springer, vol. 14(3), pages 223-259, September.
    12. Lu, Da & Gzara, Fatma, 2019. "The robust vehicle routing problem with time windows: Solution by branch and price and cut," European Journal of Operational Research, Elsevier, vol. 275(3), pages 925-938.
    13. Stefan Irnich & Daniel Villeneuve, 2006. "The Shortest-Path Problem with Resource Constraints and k -Cycle Elimination for k (ge) 3," INFORMS Journal on Computing, INFORMS, vol. 18(3), pages 391-406, August.
    14. Christian Tilk & Ann-Kathrin Rothenbächer & Timo Gschwind & Stefan Irnich, 2016. "Asymmetry Helps: Dynamic Half-Way Points for Solving Shortest Path Problems with Resource Constraints Faster," Working Papers 1615, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    15. Tilk, Christian & Rothenbächer, Ann-Kathrin & Gschwind, Timo & Irnich, Stefan, 2017. "Asymmetry matters: Dynamic half-way points in bidirectional labeling for solving shortest path problems with resource constraints faster," European Journal of Operational Research, Elsevier, vol. 261(2), pages 530-539.
    16. Stefan Irnich & Guy Desaulniers & Jacques Desrosiers & Ahmed Hadjar, 2010. "Path-Reduced Costs for Eliminating Arcs in Routing and Scheduling," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 297-313, May.
    17. Roberto Baldacci & Enrico Bartolini & Aristide Mingozzi & Roberto Roberti, 2010. "An exact solution framework for a broad class of vehicle routing problems," Computational Management Science, Springer, vol. 7(3), pages 229-268, July.
    18. Alarcon Ortega, Emilio J. & Schilde, Michael & Doerner, Karl F., 2020. "Matheuristic search techniques for the consistent inventory routing problem with time windows and split deliveries," Operations Research Perspectives, Elsevier, vol. 7(C).
    19. Albert H. Schrotenboer & Evrim Ursavas & Iris F. A. Vis, 2019. "A Branch-and-Price-and-Cut Algorithm for Resource-Constrained Pickup and Delivery Problems," Transportation Science, INFORMS, vol. 53(4), pages 1001-1022, July.
    20. Luciano Costa & Claudio Contardo & Guy Desaulniers, 2019. "Exact Branch-Price-and-Cut Algorithms for Vehicle Routing," Transportation Science, INFORMS, vol. 53(4), pages 946-985, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:236:y:2014:i:2:p:736-747. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.