IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i15p2536-d1719502.html
   My bibliography  Save this article

Travel Frequent-Route Identification Based on the Snake Algorithm Using License Plate Recognition Data

Author

Listed:
  • Feiyang Liu

    (School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China)

  • Jie Zeng

    (School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China)

  • Jinjun Tang

    (School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China)

  • TianJian Yu

    (School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China)

Abstract

Path flow always plays a critical role in extracting vehicle travel patterns and reflecting network-scale traffic features. However, the comprehensive topological structure of urban road networks induces massive route choices, so frequent travel routes have been gradually regarded as an ideal countermeasure to represent traffic states. Widely used license plate recognition (LPR) devices can collect the abundant traffic features of all vehicles, but their sparse spatial distributions restrict the conventional models in frequent travel identification. Therefore, this study develops a network reconstruction method to construct a topological network from the LPR dataset, avoiding the adverse effects caused by the sparse distribution of detectors on the road network and further uses the Snake algorithm to fully utilize the road network structure and traffic attributes for clustering to obtain various travel patterns, with frequent routes under different travel patterns finally identified based on Steiner trees and frequent item recognition. To address the sparse spatial distribution of LPR devices, we utilize the word2vec model to extract spatial correlations among intersections. A threshold-based method is then applied to transform the correlation matrix into a reconstructed network, connecting intersections with strong vehicle transition relationships. This community structure can be interpreted as representing different travel patterns. Consequently, the Snake algorithm is employed to cluster intersections into distinct categories, reflecting these varied travel patterns. By leveraging the word2vec model, the detector installation rate requirement for Snake is significantly reduced, ensuring that the clustering results accurately represent the intrinsic relevance of traffic roads. Subsequently, frequent routes are identified from both macro- and micro-perspectives using the Steiner tree and Frequent Pattern Growth (FP Growth) algorithm, respectively. Validated on the LPR dataset in Changsha, China, the experiment results demonstrate that the proposed method can effectively identify travel patterns and extract frequent routes in the sparsely installed LPR devices.

Suggested Citation

  • Feiyang Liu & Jie Zeng & Jinjun Tang & TianJian Yu, 2025. "Travel Frequent-Route Identification Based on the Snake Algorithm Using License Plate Recognition Data," Mathematics, MDPI, vol. 13(15), pages 1-30, August.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:15:p:2536-:d:1719502
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/15/2536/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/15/2536/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saeedmanesh, Mohammadreza & Geroliminis, Nikolas, 2016. "Clustering of heterogeneous networks with directional flows based on “Snake” similarities," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 250-269.
    2. Da Kuang & Sangwoon Yun & Haesun Park, 2015. "SymNMF: nonnegative low-rank approximation of a similarity matrix for graph clustering," Journal of Global Optimization, Springer, vol. 62(3), pages 545-574, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin, Xuri & Liu, Kezhong & Loughney, Sean & Wang, Jin & Li, Huanhuan & Ekere, Nduka & Yang, Zaili, 2023. "Multi-scale collision risk estimation for maritime traffic in complex port waters," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    2. Rundong Du & Barry Drake & Haesun Park, 2019. "Hybrid clustering based on content and connection structure using joint nonnegative matrix factorization," Journal of Global Optimization, Springer, vol. 74(4), pages 861-877, August.
    3. Arnaud Vandaele & François Glineur & Nicolas Gillis, 2018. "Algorithms for positive semidefinite factorization," Computational Optimization and Applications, Springer, vol. 71(1), pages 193-219, September.
    4. Sun, Yanhao & Wu, Jie & Song, Nuan & Lin, Tianwei & Li, Longxiang & Li, Dong, 2025. "Deep reinforcement learning-based influence maximization for heterogeneous hypergraphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 660(C).
    5. Kouvelas, Anastasios & Saeedmanesh, Mohammadreza & Geroliminis, Nikolas, 2017. "Enhancing model-based feedback perimeter control with data-driven online adaptive optimization," Transportation Research Part B: Methodological, Elsevier, vol. 96(C), pages 26-45.
    6. Tang, Siyi & Zheng, Fangfang & Zheng, Nan & Liu, Xiaobo, 2024. "An efficient multi-modal urban transportation network partitioning approach for three-dimensional macroscopic fundamental diagram," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    7. Beojone, Caio Vitor & Geroliminis, Nikolas, 2023. "A dynamic multi-region MFD model for ride-sourcing with ridesplitting," Transportation Research Part B: Methodological, Elsevier, vol. 177(C).
    8. Leclercq, Ludovic & Ladino, Andres & Becarie, Cécile, 2021. "Enforcing optimal routing through dynamic avoidance maps," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 118-137.
    9. Zheng, Nan & Geroliminis, Nikolas, 2020. "Area-based equitable pricing strategies for multimodal urban networks with heterogeneous users," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 357-374.
    10. Mohammad Halakoo & Hao Yang & Harith Abdulsattar, 2023. "Heterogeneity Aware Emission Macroscopic Fundamental Diagram (e-MFD)," Sustainability, MDPI, vol. 15(2), pages 1-18, January.
    11. Wai Wong & S. C. Wong, 2019. "Unbiased Estimation Methods of Nonlinear Transport Models Based on Linearly Projected Data," Transportation Science, INFORMS, vol. 53(3), pages 665-682, May.
    12. Guo, Yajuan & Yang, Licai & Hao, Shenxue & Gao, Jun, 2019. "Dynamic identification of urban traffic congestion warning communities in heterogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 98-111.
    13. Gu, Ziyuan & Safarighouzhdi, Farshid & Saberi, Meead & Rashidi, Taha H., 2021. "A macro-micro approach to modeling parking," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 220-244.
    14. Raadsen, Mark P.H. & Bliemer, Michiel C.J. & Bell, Michael G.H., 2020. "Aggregation, disaggregation and decomposition methods in traffic assignment: historical perspectives and new trends," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 199-223.
    15. S. F. A. Batista & Ludovic Leclercq, 2019. "Regional Dynamic Traffic Assignment Framework for Macroscopic Fundamental Diagram Multi-regions Models," Transportation Science, INFORMS, vol. 53(6), pages 1563-1590, November.
    16. Kumarage, Sakitha & Yildirimoglu, Mehmet & Zheng, Zuduo, 2023. "A hybrid modelling framework for the estimation of dynamic origin–destination flows," Transportation Research Part B: Methodological, Elsevier, vol. 176(C).
    17. Amirgholy, Mahyar & Gao, H. Oliver, 2017. "Modeling the dynamics of congestion in large urban networks using the macroscopic fundamental diagram: User equilibrium, system optimum, and pricing strategies," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 215-237.
    18. Radu-Alexandru Dragomir & Alexandre d’Aspremont & Jérôme Bolte, 2021. "Quartic First-Order Methods for Low-Rank Minimization," Journal of Optimization Theory and Applications, Springer, vol. 189(2), pages 341-363, May.
    19. Rundong Du & Da Kuang & Barry Drake & Haesun Park, 2017. "DC-NMF: nonnegative matrix factorization based on divide-and-conquer for fast clustering and topic modeling," Journal of Global Optimization, Springer, vol. 68(4), pages 777-798, August.
    20. Ampountolas, Konstantinos & Zheng, Nan & Geroliminis, Nikolas, 2017. "Macroscopic modelling and robust control of bi-modal multi-region urban road networks," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 616-637.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:15:p:2536-:d:1719502. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.